About the Project

trigonometric expansion

AdvancedHelp

(0.005 seconds)

31—40 of 111 matching pages

31: 9.7 Asymptotic Expansions
9.7.9 Ai ( z ) 1 π z 1 / 4 ( cos ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k ζ 2 k + sin ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ ,
9.7.10 Ai ( z ) z 1 / 4 π ( sin ( ζ 1 4 π ) k = 0 ( 1 ) k v 2 k ζ 2 k cos ( ζ 1 4 π ) k = 0 ( 1 ) k v 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ ,
9.7.11 Bi ( z ) 1 π z 1 / 4 ( sin ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k ζ 2 k + cos ( ζ 1 4 π ) k = 0 ( 1 ) k u 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ ,
9.7.12 Bi ( z ) z 1 / 4 π ( cos ( ζ 1 4 π ) k = 0 ( 1 ) k v 2 k ζ 2 k + sin ( ζ 1 4 π ) k = 0 ( 1 ) k v 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ .
9.7.14 Bi ( z e ± π i / 3 ) 2 π e π i / 6 z 1 / 4 ( sin ( ζ 1 4 π 1 2 i ln 2 ) k = 0 ( 1 ) k v 2 k ζ 2 k + cos ( ζ 1 4 π 1 2 i ln 2 ) k = 0 ( 1 ) k v 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ .
32: 11.11 Asymptotic Expansions of Anger–Weber Functions
11.11.2 𝐉 ν ( z ) J ν ( z ) + sin ( π ν ) π z ( k = 0 F k ( ν ) z 2 k ν z k = 0 G k ( ν ) z 2 k ) ,
11.11.3 𝐄 ν ( z ) Y ν ( z ) 1 + cos ( π ν ) π z k = 0 F k ( ν ) z 2 k ν ( 1 cos ( π ν ) ) π z 2 k = 0 G k ( ν ) z 2 k ,
33: 10.17 Asymptotic Expansions for Large Argument
10.17.3 J ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.4 Y ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k a 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k a 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.9 J ν ( z ) ( 2 π z ) 1 2 ( sin ω k = 0 ( 1 ) k b 2 k ( ν ) z 2 k + cos ω k = 0 ( 1 ) k b 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
10.17.10 Y ν ( z ) ( 2 π z ) 1 2 ( cos ω k = 0 ( 1 ) k b 2 k ( ν ) z 2 k sin ω k = 0 ( 1 ) k b 2 k + 1 ( ν ) z 2 k + 1 ) , | ph z | π δ ,
34: Bibliography F
  • C. L. Frenzen (1990) Error bounds for a uniform asymptotic expansion of the Legendre function Q n m ( cosh z ) . SIAM J. Math. Anal. 21 (2), pp. 523–535.
  • 35: 10.12 Generating Function and Associated Series
    Jacobi–Anger expansions: for z , θ ,
    cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
    sin ( z sin θ ) = 2 k = 0 J 2 k + 1 ( z ) sin ( ( 2 k + 1 ) θ ) ,
    cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
    sin ( z cos θ ) = 2 k = 0 ( 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) .
    36: 6.10 Other Series Expansions
    §6.10 Other Series Expansions
    §6.10(i) Inverse Factorial Series
    §6.10(ii) Expansions in Series of Spherical Bessel Functions
    6.10.4 Si ( z ) = z n = 0 ( 𝗃 n ( 1 2 z ) ) 2 ,
    An expansion for E 1 ( z ) can be obtained by combining (6.2.4) and (6.10.8).
    37: 24.19 Methods of Computation
  • Buhler et al. (1992) uses the expansion

    24.19.3 t 2 cosh t 1 = 2 n = 0 ( 2 n 1 ) B 2 n t 2 n ( 2 n ) ! ,

    and computes inverses modulo p of the left-hand side. Multisectioning techniques are applied in implementations. See also Crandall (1996, pp. 116–120).

  • 38: 19.5 Maclaurin and Related Expansions
    §19.5 Maclaurin and Related Expansions
    Series expansions of F ( ϕ , k ) and E ( ϕ , k ) are surveyed and improved in Van de Vel (1969), and the case of F ( ϕ , k ) is summarized in Gautschi (1975, §1.3.2). For series expansions of Π ( ϕ , α 2 , k ) when | α 2 | < 1 see Erdélyi et al. (1953b, §13.6(9)). …
    39: 24.8 Series Expansions
    24.8.9 E 2 n = ( 1 ) n k = 1 k 2 n cosh ( 1 2 π k ) 4 k = 0 ( 1 ) k ( 2 k + 1 ) 2 n e 2 π ( 2 k + 1 ) 1 , n = 1 , 2 , .
    40: 8.12 Uniform Asymptotic Expansions for Large Parameter
    8.12.16 e ± π i a 2 i sin ( π a ) Q ( a , a e ± π i ) ± 1 2 i 2 π a k = 0 c k ( 0 ) ( a ) k , | ph a | π δ ,