About the Project

transformation of variable

AdvancedHelp

(0.004 seconds)

41—50 of 114 matching pages

41: 13.23 Integrals
13.23.1 0 e z t t ν 1 M κ , μ ( t ) d t = Γ ( μ + ν + 1 2 ) ( z + 1 2 ) μ + ν + 1 2 F 1 2 ( 1 2 + μ κ , 1 2 + μ + ν 1 + 2 μ ; 1 z + 1 2 ) , μ + ν + 1 2 > 0 , z > 1 2 .
13.23.2 0 e z t t μ 1 2 M κ , μ ( t ) d t = Γ ( 2 μ + 1 ) ( z + 1 2 ) κ μ 1 2 ( z 1 2 ) κ μ 1 2 , μ > 1 2 , z > 1 2 ,
13.23.4 0 e z t t ν 1 W κ , μ ( t ) d t = Γ ( 1 2 + μ + ν ) Γ ( 1 2 μ + ν ) 𝐅 1 2 ( 1 2 μ + ν , 1 2 + μ + ν ν κ + 1 ; 1 2 z ) , ( ν + 1 2 ) > | μ | , z > 1 2 ,
13.23.6 1 Γ ( 1 + 2 μ ) 2 π i ( 0 + ) e z t + 1 2 t 1 t κ M κ , μ ( t 1 ) d t = z κ 1 2 Γ ( 1 2 + μ κ ) I 2 μ ( 2 z ) , z > 0 .
13.23.7 1 2 π i ( 0 + ) e z t + 1 2 t 1 t κ W κ , μ ( t 1 ) d t = 2 z κ 1 2 Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) K 2 μ ( 2 z ) , z > 0 .
42: 15.14 Integrals
15.14.1 0 x s 1 𝐅 ( a , b c ; x ) d x = Γ ( s ) Γ ( a s ) Γ ( b s ) Γ ( a ) Γ ( b ) Γ ( c s ) , min ( a , b ) > s > 0 .
43: 18.17 Integrals
18.17.36 1 1 ( 1 x ) z 1 ( 1 + x ) β P n ( α , β ) ( x ) d x = 2 β + z Γ ( z ) Γ ( 1 + β + n ) ( 1 + α z ) n n ! Γ ( 1 + β + z + n ) , z > 0 .
18.17.37 0 1 ( 1 x 2 ) λ 1 2 C n ( λ ) ( x ) x z 1 d x = π  2 1 2 λ z Γ ( n + 2 λ ) Γ ( z ) n ! Γ ( λ ) Γ ( 1 2 + 1 2 n + λ + 1 2 z ) Γ ( 1 2 + 1 2 z 1 2 n ) , z > 0 .
18.17.38 0 1 P 2 n ( x ) x z 1 d x = ( 1 ) n ( 1 2 1 2 z ) n 2 ( 1 2 z ) n + 1 , z > 0 ,
18.17.39 0 1 P 2 n + 1 ( x ) x z 1 d x = ( 1 ) n ( 1 1 2 z ) n 2 ( 1 2 + 1 2 z ) n + 1 , z > 1 .
18.17.40 0 e a x L n ( α ) ( b x ) x z 1 d x = Γ ( z + n ) n ! ( a b ) n a n z F 1 2 ( n , 1 + α z 1 n z ; a a b ) , a > 0 , z > 0 .
44: 17.9 Further Transformations of ϕ r r + 1 Functions
§17.9 Further Transformations of ϕ r r + 1 Functions
F. H. Jackson’s Transformations
Transformations of ϕ 2 3 -Series
Sears–Carlitz Transformation
Mixed-Base Heine-Type Transformations
45: 18.7 Interrelations and Limit Relations
§18.7(i) Linear Transformations
18.7.7 T n ( x ) = T n ( 2 x 1 ) ,
18.7.11 𝐻𝑒 n ( x ) = 2 1 2 n H n ( 2 1 2 x ) ,
18.7.12 H n ( x ) = 2 1 2 n 𝐻𝑒 n ( 2 1 2 x ) .
§18.7(ii) Quadratic Transformations
46: 12.17 Physical Applications
12.17.2 2 = 2 x 2 + 2 y 2 + 2 z 2
Setting w = U ( ξ ) V ( η ) W ( ζ ) and separating variables, we obtain …The first two equations can be transformed into (12.2.2) or (12.2.3). In a similar manner coordinates of the paraboloid of revolution transform the Helmholtz equation into equations related to the differential equations considered in this chapter. … Miller (1974) treats separation of variables by group theoretic methods. …
47: 2.3 Integrals of a Real Variable
Assume that the Laplace transform …Then … where f ( α ) is the Mellin transform of f ( t ) 2.5(i)). … The integral (2.3.24) transforms into …
§2.3(vi) Asymptotics of Mellin Transforms
48: 29.18 Mathematical Applications
when transformed to sphero-conal coordinates r , β , γ : … The wave equation (29.18.1), when transformed to ellipsoidal coordinates α , β , γ : …
49: 13.10 Integrals
§13.10(ii) Laplace Transforms
§13.10(iii) Mellin Transforms
§13.10(iv) Fourier Transforms
§13.10(v) Hankel Transforms
50: 11.5 Integral Representations
11.5.8 ( 1 2 x ) ν 1 𝐇 ν ( x ) = 1 2 π i i i π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 x 2 ) s d s , x > 0 , ν > 1 ,
11.5.9 ( 1 2 z ) ν 1 𝐋 ν ( z ) = 1 2 π i ( 0 + ) π csc ( π s ) Γ ( 3 2 + s ) Γ ( 3 2 + ν + s ) ( 1 4 z 2 ) s d s .