About the Project

spherical polar coordinates

AdvancedHelp

(0.001 seconds)

21—30 of 114 matching pages

21: 10.54 Integral Representations
§10.54 Integral Representations
β–Ί
10.54.2 𝗃 n ⁑ ( z ) = ( i ) n 2 ⁒ 0 Ο€ e i ⁒ z ⁒ cos ⁑ ΞΈ ⁒ P n ⁑ ( cos ⁑ ΞΈ ) ⁒ sin ⁑ ΞΈ ⁒ d ΞΈ .
β–Ί
10.54.3 𝗄 n ⁑ ( z ) = Ο€ 2 ⁒ 1 e z ⁒ t ⁒ P n ⁑ ( t ) ⁒ d t , | ph ⁑ z | < 1 2 ⁒ Ο€ .
β–Ί
𝗁 n ( 1 ) ⁑ ( z ) = ( i ) n + 1 Ο€ ⁒ i ⁒ ( 1 + ) e i ⁒ z ⁒ t ⁒ Q n ⁑ ( t ) ⁒ d t ,
β–ΊFor the Legendre polynomial P n and the associated Legendre function Q n see §§18.3 and 14.21(i), with ΞΌ = 0 and Ξ½ = n . …
22: 6.10 Other Series Expansions
β–Ί
§6.10(ii) Expansions in Series of Spherical Bessel Functions
β–Ί
6.10.4 Si ⁑ ( z ) = z ⁒ n = 0 ( 𝗃 n ⁑ ( 1 2 ⁒ z ) ) 2 ,
β–Ί
6.10.5 Cin ⁑ ( z ) = n = 1 a n ⁒ ( 𝗃 n ⁑ ( 1 2 ⁒ z ) ) 2 ,
β–Ί
6.10.6 Ei ⁑ ( x ) = Ξ³ + ln ⁑ | x | + n = 0 ( 1 ) n ⁒ ( x a n ) ⁒ ( 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ x ) ) 2 , x 0 ,
β–Ί
6.10.8 Ein ⁑ ( z ) = z ⁒ e z / 2 ⁒ ( 𝗂 0 ( 1 ) ⁑ ( 1 2 ⁒ z ) + n = 1 2 ⁒ n + 1 n ⁒ ( n + 1 ) ⁒ 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ z ) ) .
23: 30.2 Differential Equations
β–ΊIn applications involving prolate spheroidal coordinates Ξ³ 2 is positive, in applications involving oblate spheroidal coordinates Ξ³ 2 is negative; see §§30.13, 30.14. … β–ΊIf Ξ³ = 0 , Equation (30.2.4) is satisfied by spherical Bessel functions; see (10.47.1).
24: 10.59 Integrals
§10.59 Integrals
β–Ί
10.59.1 e i ⁒ b ⁒ t ⁒ 𝗃 n ⁑ ( t ) ⁒ d t = { Ο€ ⁒ i n ⁒ P n ⁑ ( b ) , 1 < b < 1 , 1 2 ⁒ Ο€ ⁒ ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
β–Ίwhere P n is the Legendre polynomial (§18.3). β–ΊFor an integral representation of the Dirac delta in terms of a product of spherical Bessel functions of the first kind see §1.17(ii), and for a generalization see Maximon (1991). …
25: 30.10 Series and Integrals
β–ΊFor expansions in products of spherical Bessel functions, see Flammer (1957, Chapter 6).
26: 7.6 Series Expansions
β–Ί
§7.6(ii) Expansions in Series of Spherical Bessel Functions
β–Ί
7.6.8 erf ⁑ z = 2 ⁒ z Ο€ ⁒ n = 0 ( 1 ) n ⁒ ( 𝗂 2 ⁒ n ( 1 ) ⁑ ( z 2 ) 𝗂 2 ⁒ n + 1 ( 1 ) ⁑ ( z 2 ) ) ,
β–Ί
7.6.9 erf ⁑ ( a ⁒ z ) = 2 ⁒ z Ο€ ⁒ e ( 1 2 a 2 ) ⁒ z 2 ⁒ n = 0 T 2 ⁒ n + 1 ⁑ ( a ) ⁒ 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ z 2 ) , 1 a 1 .
β–Ί
7.6.10 C ⁑ ( z ) = z ⁒ n = 0 𝗃 2 ⁒ n ⁑ ( 1 2 ⁒ Ο€ ⁒ z 2 ) ,
β–Ί
7.6.11 S ⁑ ( z ) = z ⁒ n = 0 𝗃 2 ⁒ n + 1 ⁑ ( 1 2 ⁒ Ο€ ⁒ z 2 ) .
27: 36.13 Kelvin’s Ship-Wave Pattern
β–ΊIn a reference frame where the ship is at rest we use polar coordinates r and Ο• with Ο• = 0 in the direction of the velocity of the water relative to the ship. …
28: 3.5 Quadrature
β–ΊThe p n ⁒ ( x ) are the monic Legendre polynomials, that is, the polynomials P n ⁑ ( x ) 18.3) scaled so that the coefficient of the highest power of x in their explicit forms is unity. … β–Ί
Table 3.5.17_5: Recurrence coefficients in (3.5.30) and (3.5.30_5) for monic versions p n ⁒ ( x ) and orthonormal versions q n ⁒ ( x ) of the classical orthogonal polynomials.
β–Ί β–Ίβ–Ίβ–Ί
p n ⁒ ( x ) q n ⁒ ( x ) α n β n h 0
1 k n ⁒ P n ⁑ ( x ) 1 h n ⁒ P n ⁑ ( x ) 0 n 2 4 ⁒ n 2 1 2
β–Ί
β–ΊThe steepest descent path is given by ⁑ ( t 2 ⁒ t ) = 0 , or in polar coordinates t = r ⁒ e i ⁒ ΞΈ we have r = sec 2 ⁑ ( 1 2 ⁒ ΞΈ ) . …
29: 12.17 Physical Applications
§12.17 Physical Applications
β–Ίin Cartesian coordinates x , y , z of three-dimensional space (§1.5(ii)). By using instead coordinates of the parabolic cylinder ΞΎ , Ξ· , ΞΆ , defined by … β–ΊIn a similar manner coordinates of the paraboloid of revolution transform the Helmholtz equation into equations related to the differential equations considered in this chapter. … …
30: 8.7 Series Expansions
§8.7 Series Expansions
β–ΊFor the functions e n ⁑ ( z ) , 𝗂 n ( 1 ) ⁑ ( z ) , and L n ( Ξ± ) ⁑ ( x ) see (8.4.11), §§10.47(ii), and 18.3, respectively. … β–Ί
8.7.5 Ξ³ ⁑ ( a , z ) = e 1 2 ⁒ z ⁒ n = 0 ( 1 a ) n Ξ“ ⁑ ( n + a + 1 ) ⁒ ( 2 ⁒ n + 1 ) ⁒ 𝗂 n ( 1 ) ⁑ ( 1 2 ⁒ z ) .