About the Project

sigma function

AdvancedHelp

(0.004 seconds)

31—40 of 73 matching pages

31: Bibliography C
  • H. S. Cohl, J. Park, and H. Volkmer (2021) Gauss hypergeometric representations of the Ferrers function of the second kind. SIGMA Symmetry Integrability Geom. Methods Appl. 17, pp. Paper 053, 33.
  • H. S. Cohl (2011) On parameter differentiation for integral representations of associated Legendre functions. SIGMA Symmetry Integrability Geom. Methods Appl. 7, pp. Paper 050, 16.
  • 32: Bibliography M
  • T. Morita (2013) A connection formula for the q -confluent hypergeometric function. SIGMA Symmetry Integrability Geom. Methods Appl. 9, pp. Paper 050, 13.
  • L. A. Muraveĭ (1976) Zeros of the function A i ( z ) σ A i ( z ) . Differential Equations 11, pp. 797–811.
  • 33: 31.10 Integral Equations and Representations
    31.10.10 𝒦 ( z , t ) = ( z t a ) 1 2 δ σ F 1 2 ( 1 2 δ σ + α , 1 2 δ σ + β γ ; z t a ) F 1 2 ( 1 2 + δ + σ , 1 2 + ϵ σ δ ; a ( z 1 ) ( t 1 ) ( a 1 ) ( z t a ) ) ,
    31.10.11 𝒦 ( z , t ) = ( z t a ) 1 2 δ σ ( z t / a ) 1 2 + δ + σ α F 1 2 ( 1 2 δ σ + α , 3 2 δ σ + α γ α β + 1 ; a z t ) P { 0 1 0 0 1 2 + δ + σ ( z a ) ( t a ) ( 1 a ) ( z t a ) 1 ϵ 1 δ 1 2 + ϵ σ } .
    31.10.19 𝒦 ( u , v , w ) = u 1 γ v 1 δ w 1 ϵ 𝒞 1 γ ( u σ 1 ) 𝒞 1 δ ( v σ 2 ) 𝒞 1 ϵ ( i w σ 1 + σ 2 ) ,
    34: Bibliography L
  • N. Levinson (1974) More than one third of zeros of Riemann’s zeta-function are on σ = 1 2 . Advances in Math. 13 (4), pp. 383–436.
  • 35: 7.20 Mathematical Applications
    The normal distribution function with mean m and standard deviation σ is given by
    7.20.1 1 σ 2 π x e ( t m ) 2 / ( 2 σ 2 ) d t = 1 2 erfc ( m x σ 2 ) = Q ( m x σ ) = P ( x m σ ) .
    36: 25.9 Asymptotic Approximations
    25.9.1 ζ ( σ + i t ) = 1 n x 1 n s + χ ( s ) 1 n y 1 n 1 s + O ( x σ ) + O ( y σ 1 t 1 2 σ ) ,
    where s = σ + i t and …
    37: 23.22 Methods of Computation
    The functions ζ ( z ) and σ ( z ) are computed in a similar manner: the former by replacing u and z in (23.6.13) by z and π z / ( 2 ω 1 ) , respectively, and also referring to (23.6.8); the latter by applying (23.6.9). …
    38: 1.15 Summability Methods
    1.15.45 σ R ( θ ) = f ( t ) K R ( θ t ) d t .
    1.15.46 lim R | σ R ( θ ) f ( θ ) | d θ = 0 .
    39: 2.4 Contour Integrals
    2.4.3 q ( t ) = 1 2 π i lim η σ i η σ + i η e t z Q ( z ) d z , 0 < t < ,
    2.4.5 q ( t ) = 1 2 π i σ i σ + i e t z Q ( z ) d z , 0 < t < ,
    2.4.6 f ( t ) = 1 2 π i lim η σ i η σ + i η e t z F ( z ) d z
    2.4.7 q ( t ) f ( t ) = e σ t 2 π lim η η η e i t τ ( Q ( σ + i τ ) F ( σ + i τ ) ) d τ .
    40: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    , T has no eigenfunctions in L 2 ( X ) , then the spectrum 𝝈 of T consists only of a continuous spectrum, referred to as 𝝈 c . …
    1.18.64 f ( x ) = 𝝈 c f ^ ( λ ) ϕ λ ( x ) d λ + 𝝈 p f ^ ( λ n ) ϕ λ n ( x ) , f ( x ) C ( X ) L 2 ( X ) .
    1.18.65 X | f ( x ) | 2 d x = 𝝈 c | f ^ ( λ ) | 2 d λ + 𝝈 p | f ^ ( λ n ) | 2 , f L 2 ( X ) .
    1.18.66 ( z T ) 1 f , f = 𝝈 p | f ^ ( λ n ) | 2 z λ n + 𝝈 c | f ^ ( λ ) | 2 d λ z λ , f L 2 ( X ) , z 𝝈 .