About the Project

scaled gamma function

AdvancedHelp

(0.008 seconds)

11—20 of 40 matching pages

11: 7.18 Repeated Integrals of the Complementary Error Function
See accompanying text
Figure 7.18.1: Repeated integrals of the scaled complementary error function 2 n Γ ( 1 2 n + 1 ) i n erfc ( x ) , n = 0 , 1 , 2 , 4 , 8 , 16 . Magnify
12: 14.1 Special Notation
x , y , τ real variables.
𝐅 ( a , b ; c ; z ) Olver’s scaled hypergeometric function: F ( a , b ; c ; z ) / Γ ( c ) .
13: 30.15 Signal Analysis
§30.15(i) Scaled Spheroidal Wave Functions
§30.15(iv) Orthogonality
§30.15(v) Extremal Properties
14: 10.22 Integrals
10.22.49 0 t μ 1 e a t J ν ( b t ) d t = ( 1 2 b ) ν a μ + ν Γ ( μ + ν ) 𝐅 ( μ + ν 2 , μ + ν + 1 2 ; ν + 1 ; b 2 a 2 ) , ( μ + ν ) > 0 , ( a ± i b ) > 0 ,
10.22.50 0 t μ 1 e a t Y ν ( b t ) d t = cot ( ν π ) ( 1 2 b ) ν Γ ( μ + ν ) ( a 2 + b 2 ) 1 2 ( μ + ν ) 𝐅 ( μ + ν 2 , 1 μ + ν 2 ; ν + 1 ; b 2 a 2 + b 2 ) csc ( ν π ) ( 1 2 b ) ν Γ ( μ ν ) ( a 2 + b 2 ) 1 2 ( μ ν ) 𝐅 ( μ ν 2 , 1 μ ν 2 ; 1 ν ; b 2 a 2 + b 2 ) , μ > | ν | , ( a ± i b ) > 0 .
10.22.56 0 J μ ( a t ) J ν ( b t ) t λ d t = a μ Γ ( 1 2 ν + 1 2 μ 1 2 λ + 1 2 ) 2 λ b μ λ + 1 Γ ( 1 2 ν 1 2 μ + 1 2 λ + 1 2 ) 𝐅 ( 1 2 ( μ + ν λ + 1 ) , 1 2 ( μ ν λ + 1 ) ; μ + 1 ; a 2 b 2 ) , 0 < a < b , ( μ + ν + 1 ) > λ > 1 .
10.22.58 0 J ν ( a t ) J ν ( b t ) t λ d t = ( a b ) ν Γ ( ν 1 2 λ + 1 2 ) 2 λ ( a 2 + b 2 ) ν 1 2 λ + 1 2 Γ ( 1 2 λ + 1 2 ) 𝐅 ( 2 ν + 1 λ 4 , 2 ν + 3 λ 4 ; ν + 1 ; 4 a 2 b 2 ( a 2 + b 2 ) 2 ) , a b , ( 2 ν + 1 ) > λ > 1 .
10.22.64 0 J μ + 2 n + 1 ( a t ) J μ ( b t ) d t = { b μ Γ ( μ + n + 1 ) a μ + 1 n ! 𝐅 ( n , μ + n + 1 ; μ + 1 ; b 2 a 2 ) , 0 < b < a , ( 1 ) n / ( 2 a ) , b = a ( > 0 ) , 0 , 0 < a < b .
15: 15.8 Transformations of Variable
15.8.2 sin ( π ( b a ) ) π 𝐅 ( a , b c ; z ) = ( z ) a Γ ( b ) Γ ( c a ) 𝐅 ( a , a c + 1 a b + 1 ; 1 z ) ( z ) b Γ ( a ) Γ ( c b ) 𝐅 ( b , b c + 1 b a + 1 ; 1 z ) , | ph ( z ) | < π .
15.8.3 sin ( π ( b a ) ) π 𝐅 ( a , b c ; z ) = ( 1 z ) a Γ ( b ) Γ ( c a ) 𝐅 ( a , c b a b + 1 ; 1 1 z ) ( 1 z ) b Γ ( a ) Γ ( c b ) 𝐅 ( b , c a b a + 1 ; 1 1 z ) , | ph ( z ) | < π .
15.8.4 sin ( π ( c a b ) ) π 𝐅 ( a , b c ; z ) = 1 Γ ( c a ) Γ ( c b ) 𝐅 ( a , b a + b c + 1 ; 1 z ) ( 1 z ) c a b Γ ( a ) Γ ( b ) 𝐅 ( c a , c b c a b + 1 ; 1 z ) , | ph z | < π , | ph ( 1 z ) | < π .
15.8.5 sin ( π ( c a b ) ) π 𝐅 ( a , b c ; z ) = z a Γ ( c a ) Γ ( c b ) 𝐅 ( a , a c + 1 a + b c + 1 ; 1 1 z ) ( 1 z ) c a b z a c Γ ( a ) Γ ( b ) 𝐅 ( c a , 1 a c a b + 1 ; 1 1 z ) , | ph z | < π , | ph ( 1 z ) | < π .
15.8.10 𝐅 ( a , b a + b + m ; z ) = 1 Γ ( a + m ) Γ ( b + m ) k = 0 m 1 ( a ) k ( b ) k ( m k 1 ) ! k ! ( z 1 ) k ( z 1 ) m Γ ( a ) Γ ( b ) k = 0 ( a + m ) k ( b + m ) k k ! ( k + m ) ! ( 1 z ) k ( ln ( 1 z ) ψ ( k + 1 ) ψ ( k + m + 1 ) + ψ ( a + k + m ) + ψ ( b + k + m ) ) , | z 1 | < 1 , | ph ( 1 z ) | < π ,
16: 15.2 Definitions and Analytical Properties
15.2.2 𝐅 ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s Γ ( c + s ) s ! z s , | z | < 1 ,
15.2.3 𝐅 ( a , b c ; x + i 0 ) 𝐅 ( a , b c ; x i 0 ) = 2 π i Γ ( a ) Γ ( b ) ( x 1 ) c a b 𝐅 ( c a , c b c a b + 1 ; 1 x ) , x > 1 .
15.2.3_5 lim c n F ( a , b ; c ; z ) Γ ( c ) = 𝐅 ( a , b ; n ; z ) = ( a ) n + 1 ( b ) n + 1 ( n + 1 ) ! z n + 1 F ( a + n + 1 , b + n + 1 ; n + 2 ; z ) , n = 0 , 1 , 2 , .
17: 15.6 Integral Representations
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.6 𝐅 ( a , b ; c ; z ) = 1 2 π i Γ ( a ) Γ ( b ) i i Γ ( a + t ) Γ ( b + t ) Γ ( t ) Γ ( c + t ) ( z ) t d t , | ph ( z ) | < π ; a , b 0 , 1 , 2 , .
15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
18: 10.43 Integrals
10.43.26 0 K μ ( a t ) J ν ( b t ) t λ d t = b ν Γ ( 1 2 ν 1 2 λ + 1 2 μ + 1 2 ) Γ ( 1 2 ν 1 2 λ 1 2 μ + 1 2 ) 2 λ + 1 a ν λ + 1 𝐅 ( ν λ + μ + 1 2 , ν λ μ + 1 2 ; ν + 1 ; b 2 a 2 ) , ( ν + 1 λ ) > | μ | , a > | b | .
19: 14.19 Toroidal (or Ring) Functions
14.19.2 P ν 1 2 μ ( cosh ξ ) = Γ ( 1 2 μ ) π 1 / 2 ( 1 e 2 ξ ) μ e ( ν + ( 1 / 2 ) ) ξ 𝐅 ( 1 2 μ , 1 2 + ν μ ; 1 2 μ ; 1 e 2 ξ ) , μ 1 2 , 3 2 , 5 2 , .
20: 15.9 Relations to Other Functions
15.9.16 𝐅 ( a , b 2 b ; z ) = π Γ ( b ) z b + ( 1 / 2 ) ( 1 z ) ( b a ( 1 / 2 ) ) / 2 P a b ( 1 / 2 ) b + ( 1 / 2 ) ( 2 z 2 1 z ) , b 0 , 1 , 2 , , | ph ( 1 z ) | < π and | 1 z | < 1 .
15.9.22 𝐅 ( a , b 1 2 ; z ) = 2 a + b ( 3 / 2 ) π Γ ( a + 1 2 ) Γ ( b + 1 2 ) ( z 1 ) ( a b + ( 1 / 2 ) ) / 2 ( e ± π i ( a + b ( 1 / 2 ) ) P a b ( 1 / 2 ) a b + ( 1 / 2 ) ( z ) + P a b ( 1 / 2 ) a b + ( 1 / 2 ) ( z ) ) , a , b 1 2 , 3 2 , 5 2 , , 0 < | ph z | < π ,
15.9.23 𝐅 ( a , b 3 2 ; z ) = 2 a + b ( 5 / 2 ) π z Γ ( a 1 2 ) Γ ( b 1 2 ) ( z 1 ) ( a b + ( 3 / 2 ) ) / 2 ( e ± π i ( a + b ( 3 / 2 ) ) P a b ( 1 / 2 ) a b + ( 3 / 2 ) ( z ) P a b ( 1 / 2 ) a b + ( 3 / 2 ) ( z ) ) , a , b 1 2 , 1 2 , 3 2 , , 0 < | ph z | < π ,