About the Project

resurgence%20properties%20of%20coefficients

AdvancedHelp

(0.002 seconds)

1—10 of 404 matching pages

1: Bibliography N
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2015c) The resurgence properties of the incomplete gamma function II. Stud. Appl. Math. 135 (1), pp. 86–116.
  • G. Nemes (2016) The resurgence properties of the incomplete gamma function, I. Anal. Appl. (Singap.) 14 (5), pp. 631–677.
  • 2: 20 Theta Functions
    Chapter 20 Theta Functions
    3: Bibliography O
  • A. B. Olde Daalhuis (1998c) On the resurgence properties of the uniform asymptotic expansion of the incomplete gamma function. Methods Appl. Anal. 5 (4), pp. 425–438.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 4: 2.11 Remainder Terms; Stokes Phenomenon
    with …
    §2.11(v) Exponentially-Improved Expansions (continued)
    However, to enjoy the resurgence property2.7(ii)) we often seek instead expansions in terms of the F -functions introduced in §2.11(iii), leaving the connection of the error-function type behavior as an implicit consequence of this property of the F -functions. … In addition to achieving uniform exponential improvement, particularly in | ph z | π for w 1 ( z ) , and 0 ph z 2 π for w 2 ( z ) , the re-expansions (2.11.20), (2.11.21) are resurgent. … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
    5: William P. Reinhardt
    Reinhardt is a theoretical chemist and atomic physicist, who has always been interested in orthogonal polynomials and in the analyticity properties of the functions of mathematical physics. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    6: 8 Incomplete Gamma and Related
    Functions
    7: 28 Mathieu Functions and Hill’s Equation
    8: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 9: 23 Weierstrass Elliptic and Modular
    Functions
    10: 10.20 Uniform Asymptotic Expansions for Large Order
    For (10.20.14) and further information on the coefficients see Temme (1997). … For resurgence properties of the coefficients2.7(ii)) see Howls and Olde Daalhuis (1999). …
    §10.20(iii) Double Asymptotic Properties
    For asymptotic properties of the expansions (10.20.4)–(10.20.6) with respect to large values of z see §10.41(v).