About the Project

representation via plane algebraic curve

AdvancedHelp

(0.002 seconds)

11—20 of 378 matching pages

11: Bibliography B
  • Á. Baricz and T. K. Pogány (2013) Integral representations and summations of the modified Struve function. Acta Math. Hungar. 141 (3), pp. 254–281.
  • M. V. Berry and J. P. Keating (1992) A new asymptotic representation for ζ ( 1 2 + i t ) and quantum spectral determinants. Proc. Roy. Soc. London Ser. A 437, pp. 151–173.
  • P. Boalch (2005) From Klein to Painlevé via Fourier, Laplace and Jimbo. Proc. London Math. Soc. (3) 90 (1), pp. 167–208.
  • E. Brieskorn and H. Knörrer (1986) Plane Algebraic Curves. Birkhäuser Verlag, Basel.
  • P. L. Butzer and M. Hauss (1992) Riemann zeta function: Rapidly converging series and integral representations. Appl. Math. Lett. 5 (2), pp. 83–88.
  • 12: Bibliography S
  • B. E. Sagan (2001) The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. 2nd edition, Graduate Texts in Mathematics, Vol. 203, Springer-Verlag, New York.
  • B. I. Schneider, X. Guan, and K. Bartschat (2016) Time propagation of partial differential equations using the short iterative Lanczos method and finite-element discrete variable representation. Adv. Quantum Chem. 72, pp. 95–127.
  • R. Shail (1980) On integral representations for Lamé and other special functions. SIAM J. Math. Anal. 11 (4), pp. 702–723.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • R. Sips (1949) Représentation asymptotique des fonctions de Mathieu et des fonctions d’onde sphéroidales. Trans. Amer. Math. Soc. 66 (1), pp. 93–134 (French).
  • 13: 19.30 Lengths of Plane Curves
    §19.30 Lengths of Plane Curves
    §19.30(i) Ellipse
    §19.30(ii) Hyperbola
    For other plane curves with arclength representable by an elliptic integral see Greenhill (1892, p. 190) and Bowman (1953, pp. 32–33).
    14: 21.7 Riemann Surfaces
    §21.7(i) Connection of Riemann Theta Functions to Riemann Surfaces
    Belokolos et al. (1994, §2.1)), they are obtainable from plane algebraic curves (Springer (1957), or Riemann (1851)). …Equation (21.7.1) determines a plane algebraic curve in 2 , which is made compact by adding its points at infinity. … If a local coordinate z is chosen on the Riemann surface, then the local coordinate representation of these holomorphic differentials is given by … These are Riemann surfaces that may be obtained from algebraic curves of the form …
    15: 15.17 Mathematical Applications
    The quotient of two solutions of (15.10.1) maps the closed upper half-plane z 0 conformally onto a curvilinear triangle. …
    §15.17(iii) Group Representations
    These monodromy groups are finite iff the solutions of Riemann’s differential equation are all algebraic. …
    16: 4.13 Lambert W -Function
    See accompanying text
    Figure 4.13.2: The W ( z ) function on the first 5 Riemann sheets. W ( z ) maps the first Riemann sheet | ph ( z + e 1 ) | < π in the middle of the left-hand side to the region enclosed by the green curve on the right-hand side; it maps the Riemann sheet π < ph z < 3 π on the left-hand side to the region enclosed by the pink, green and orange curves on the right-hand side, etc. Magnify
    Explicit representations for the p n ( x ) are given in Kalugin and Jeffrey (2011). …
    4.13.5_1 ( W 0 ( z ) z ) a = e a W 0 ( z ) = n = 0 a ( n + a ) n 1 n ! ( z ) n , | z | < e 1 , a .
    See Jeffrey and Murdoch (2017) for an explicit representation for the c n in terms of associated Stirling numbers. … For these and other integral representations of the Lambert W -function see Kheyfits (2004), Kalugin et al. (2012) and Mező (2020). …
    17: 14.26 Uniform Asymptotic Expansions
    The uniform asymptotic approximations given in §14.15 for P ν μ ( x ) and 𝑸 ν μ ( x ) for 1 < x < are extended to domains in the complex plane in the following references: §§14.15(i) and 14.15(ii), Dunster (2003b); §14.15(iii), Olver (1997b, Chapter 12); §14.15(iv), Boyd and Dunster (1986). … See also Frenzen (1990), Gil et al. (2000), Shivakumar and Wong (1988), Ursell (1984), and Wong (1989) for uniform asymptotic approximations obtained from integral representations.
    18: 25.11 Hurwitz Zeta Function
    §25.11(iii) Representations by the Euler–Maclaurin Formula
    §25.11(iv) Series Representations
    §25.11(vii) Integral Representations
    §25.11(viii) Further Integral Representations
    §25.11(x) Further Series Representations
    19: 16.17 Definition
    Then the Meijer G -function is defined via the Mellin–Barnes integral representation: …
    Figure 16.17.1: s-plane. Path L for the integral representation (16.17.1) of the Meijer G -function.
    20: Bibliography K
  • D. Karp, A. Savenkova, and S. M. Sitnik (2007) Series expansions for the third incomplete elliptic integral via partial fraction decompositions. J. Comput. Appl. Math. 207 (2), pp. 331–337.
  • A. I. Kheyfits (2004) Closed-form representations of the Lambert W function. Fract. Calc. Appl. Anal. 7 (2), pp. 177–190.
  • N. Koblitz (1999) Algebraic Aspects of Cryptography. Springer-Verlag, Berlin.
  • T. H. Koornwinder (1989) Meixner-Pollaczek polynomials and the Heisenberg algebra. J. Math. Phys. 30 (4), pp. 767–769.
  • T. H. Koornwinder (1994) Compact quantum groups and q -special functions. In Representations of Lie Groups and Quantum Groups, Pitman Res. Notes Math. Ser., Vol. 311, pp. 46–128.