About the Project

relation to infinite double series

AdvancedHelp

(0.004 seconds)

11—14 of 14 matching pages

11: Bibliography L
  • T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009) New method to obtain small parameter power series expansions of Mathieu radial and angular functions. Math. Comp. 78 (265), pp. 255–274.
  • W. Lay, K. Bay, and S. Yu. Slavyanov (1998) Asymptotic and numeric study of eigenvalues of the double confluent Heun equation. J. Phys. A 31 (42), pp. 8521–8531.
  • H. Levine and J. Schwinger (1948) On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74 (8), pp. 958–974.
  • L. Lorch and M. E. Muldoon (2008) Monotonic sequences related to zeros of Bessel functions. Numer. Algorithms 49 (1-4), pp. 221–233.
  • J. N. Lyness (1985) Integrating some infinite oscillating tails. J. Comput. Appl. Math. 12/13, pp. 109–117.
  • 12: Bibliography O
  • O. M. Ogreid and P. Osland (1998) Summing one- and two-dimensional series related to the Euler series. J. Comput. Appl. Math. 98 (2), pp. 245–271.
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • F. W. J. Olver and J. M. Smith (1983) Associated Legendre functions on the cut. J. Comput. Phys. 51 (3), pp. 502–518.
  • M. K. Ong (1986) A closed form solution of the s -wave Bethe-Goldstone equation with an infinite repulsive core. J. Math. Phys. 27 (4), pp. 1154–1158.
  • 13: Errata
  • Additions

    Section: 15.9(v) Complete Elliptic Integrals. Equations: (11.11.9_5), (11.11.13_5), Intermediate equality in (15.4.27) which relates to F ( a , a ; a + 1 ; 1 2 ) , (15.4.34), (19.5.4_1), (19.5.4_2) and (19.5.4_3).

  • Section 3.1

    In ¶IEEE Standard (in §3.1(i)), the description was modified to reflect the most recent IEEE 754-2019 Floating-Point Arithmetic Standard IEEE (2019). In the new standard, single, double and quad floating-point precisions are replaced with new standard names of binary32, binary64 and binary128. Figure 3.1.1 has been expanded to include the binary128 floating-point memory positions and the caption has been updated using the terminology of the 2019 standard. A sentence at the end of Subsection 3.1(ii) has been added referring readers to the IEEE Standards for Interval Arithmetic IEEE (2015, 2018).

    Suggested by Nicola Torracca.

  • Subsection 25.2(ii) Other Infinite Series

    It is now mentioned that (25.2.5), defines the Stieltjes constants γ n . Consequently, γ n in (25.2.4), (25.6.12) are now identified as the Stieltjes constants.

  • Equations (10.22.37), (10.22.38), (14.17.6)–(14.17.9)

    The Kronecker delta symbols have been moved furthest to the right, as is common convention for orthogonality relations.

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • 14: Bibliography M
  • A. J. MacLeod (1996a) Algorithm 757: MISCFUN, a software package to compute uncommon special functions. ACM Trans. Math. Software 22 (3), pp. 288–301.
  • I. Marquette and C. Quesne (2016) Connection between quantum systems involving the fourth Painlevé transcendent and k -step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57 (5), pp. Paper 052101, 15 pp..
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • C. Mortici (2013b) Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Modelling 57 (5-6), pp. 1360–1363.