About the Project

relation to Riemann zeta function

AdvancedHelp

(0.011 seconds)

21—30 of 36 matching pages

21: Software Index
‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • Guide to Available Mathematical Software

    A cross index of mathematical software in use at NIST.

  • 22: 26.12 Plane Partitions
    A plane partition is self-complementary if it is equal to its complement. …
    §26.12(ii) Generating Functions
    §26.12(iii) Recurrence Relation
    where ζ is the Riemann ζ -function25.2(i)). Addendum: To ten decimal places, …
    23: 27.11 Asymptotic Formulas: Partial Sums
    The behavior of a number-theoretic function f ( n ) for large n is often difficult to determine because the function values can fluctuate considerably as n increases. It is more fruitful to study partial sums and seek asymptotic formulas of the form … Equations (27.11.3)–(27.11.11) list further asymptotic formulas related to some of the functions listed in §27.2. … Each of (27.11.13)–(27.11.15) is equivalent to the prime number theorem (27.2.3). The prime number theorem for arithmetic progressions—an extension of (27.2.3) and first proved in de la Vallée Poussin (1896a, b)—states that if ( h , k ) = 1 , then the number of primes p x with p h ( mod k ) is asymptotic to x / ( ϕ ( k ) ln x ) as x .
    24: Bibliography T
  • N. M. Temme (1990b) Uniform asymptotic expansions of a class of integrals in terms of modified Bessel functions, with application to confluent hypergeometric functions. SIAM J. Math. Anal. 21 (1), pp. 241–261.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • E. C. Titchmarsh (1986b) The Theory of the Riemann Zeta-Function. 2nd edition, The Clarendon Press Oxford University Press, New York-Oxford.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • C. L. Tretkoff and M. D. Tretkoff (1984) Combinatorial Group Theory, Riemann Surfaces and Differential Equations. In Contributions to Group Theory, Contemp. Math., Vol. 33, pp. 467–519.
  • 25: Errata
  • Source citations

    Specific source citations and proof metadata are now given for all equations in Chapter 25 Zeta and Related Functions.

  • Chapters 14 Legendre and Related Functions, 15 Hypergeometric Function

    The Gegenbauer function C α ( λ ) ( z ) , was labeled inadvertently as the ultraspherical (Gegenbauer) polynomial C n ( λ ) ( z ) . In order to resolve this inconsistency, this function now links correctly to its definition. This change affects Gegenbauer functions which appear in §§14.3(iv), 15.9(iii).

  • Equation (19.25.37)

    The Weierstrass zeta function was incorrectly linked to the definition of the Riemann zeta function. However, to the eye, the function appeared correct. The link was corrected.

  • Equation (25.2.4)

    The original constraint, s > 0 , was removed because, as stated after (25.2.1), ζ ( s ) is meromorphic with a simple pole at s = 1 , and therefore ζ ( s ) ( s 1 ) 1 is an entire function.

    Suggested by John Harper.

  • Chapter 25 Zeta and Related Functions

    A number of additions and changes have been made to the metadata to reflect new and changed references as well as to how some equations have been derived.

  • 26: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • M. V. Berry (1995) The Riemann-Siegel expansion for the zeta function: High orders and remainders. Proc. Roy. Soc. London Ser. A 450, pp. 439–462.
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • J. M. Borwein, D. M. Bradley, and R. E. Crandall (2000) Computational strategies for the Riemann zeta function. J. Comput. Appl. Math. 121 (1-2), pp. 247–296.
  • P. L. Butzer and M. Hauss (1992) Riemann zeta function: Rapidly converging series and integral representations. Appl. Math. Lett. 5 (2), pp. 83–88.
  • 27: Bibliography I
  • M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997) Special Functions, q -Series and Related Topics. Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
  • M. E. H. Ismail and D. R. Masson (1991) Two families of orthogonal polynomials related to Jacobi polynomials. Rocky Mountain J. Math. 21 (1), pp. 359–375.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • A. Ivić (1985) The Riemann Zeta-Function. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 28: Bibliography M
  • A. J. MacLeod (1993) Chebyshev expansions for modified Struve and related functions. Math. Comp. 60 (202), pp. 735–747.
  • B. Markman (1965) Contribution no. 14. The Riemann zeta function. BIT 5, pp. 138–141.
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • S. C. Milne (1985c) A new symmetry related to 𝑆𝑈 ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • 29: Bibliography S
  • R. Sitaramachandrarao and B. Davis (1986) Some identities involving the Riemann zeta function. II. Indian J. Pure Appl. Math. 17 (10), pp. 1175–1186.
  • S. Yu. Slavyanov and N. A. Veshev (1997) Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A 30 (2), pp. 673–687.
  • G. Springer (1957) Introduction to Riemann Surfaces. Addison-Wesley Publishing Company, Reading, Massachusetts.
  • H. M. Srivastava and J. Choi (2001) Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht.
  • H. M. Srivastava (1988) Sums of certain series of the Riemann zeta function. J. Math. Anal. Appl. 134 (1), pp. 129–140.
  • 30: 19.25 Relations to Other Functions
    §19.25 Relations to Other Functions
    §19.25(iv) Theta Functions
    §19.25(vii) Hypergeometric Function