About the Project

q-multinomial coefficient

AdvancedHelp

(0.002 seconds)

31—40 of 241 matching pages

31: 31.11 Expansions in Series of Hypergeometric Functions
Taking P j = P j 5 or P j = P j 6 the coefficients c j satisfy the equations
31.11.4 L 0 c 0 + M 0 c 1 = 0 ,
31.11.5 K j c j 1 + L j c j + M j c j + 1 = 0 , j = 1 , 2 , ,
31.11.9 M 1 P 1 = 0 .
31.11.13 ( L 0 / M 0 ) K 1 / M 1 L 1 / M 1 K 2 / M 2 L 2 / M 2 = 0 .
32: 10.20 Uniform Asymptotic Expansions for Large Order
In the following formulas for the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , and D k ( ζ ) , u k , v k are the constants defined in §9.7(i), and U k ( p ) , V k ( p ) are the polynomials in p of degree 3 k defined in §10.41(ii). … Note: Another way of arranging the above formulas for the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , and D k ( ζ ) would be by analogy with (12.10.42) and (12.10.46). … For (10.20.14) and further information on the coefficients see Temme (1997). … For resurgence properties of the coefficients2.7(ii)) see Howls and Olde Daalhuis (1999). … …
33: 5.10 Continued Fractions
5.10.1 Ln Γ ( z ) + z ( z 1 2 ) ln z 1 2 ln ( 2 π ) = a 0 z + a 1 z + a 2 z + a 3 z + a 4 z + a 5 z + ,
where …
34: 25.19 Tables
  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 35: 30.18 Software
  • SWF7: Coefficients β p in (30.9.1).

  • SWF8: Coefficients c p in (30.9.4).

  • SWF9: Coefficients p in (30.3.8).

  • 36: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
    31.5.1 [ 0 a γ 0 0 P 1 Q 1 R 1 0 0 P 2 Q 2 R n 1 0 0 P n Q n ] ,
    37: 33.9 Expansions in Series of Bessel Functions
    where the function 𝗃 is as in §10.47(ii), a 1 = 0 , a 0 = ( 2 + 1 ) !! C ( η ) , and … Here b 2 = b 2 + 2 = 0 , b 2 + 1 = 1 , and
    33.9.5 4 η 2 ( k 2 ) b k + 1 + k b k 1 + b k 2 = 0 , k = 2 + 2 , 2 + 3 , .
    33.9.7 λ ( η ) k = 2 + 1 ( 1 ) k ( k 1 ) ! b k .
    38: 1.13 Differential Equations
    The equation … (More generally in (1.13.5) for n th-order differential equations, f ( z ) is the coefficient multiplying the ( n 1 ) th-order derivative of the solution divided by the coefficient multiplying the n th-order derivative of the solution, see Ince (1926, §5.2).) … u and z belong to domains U and D respectively, the coefficients f ( u , z ) and g ( u , z ) are continuous functions of both variables, and for each fixed u (fixed z ) the two functions are analytic in z (in u ). … The substitution ξ = 1 / z in (1.13.1) gives … If U ( z ) and V ( z ) are respectively solutions of …
    39: 4.47 Approximations
    Clenshaw (1962) and Luke (1975, Chapter 3) give 20D coefficients for ln , exp , sin , cos , tan , cot , arcsin , arctan , arcsinh . Schonfelder (1980) gives 40D coefficients for sin , cos , tan . …
    40: 36.8 Convergent Series Expansions
    36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
    36.8.5 f n ( ζ , ζ ¯ ) = c n ( ζ ) c n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + c n ( ζ ) d n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + d n ( ζ ) c n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + d n ( ζ ) d n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) ,