About the Project

q-differential%20equations

AdvancedHelp

(0.006 seconds)

1—10 of 502 matching pages

1: 30.2 Differential Equations
§30.2 Differential Equations
§30.2(i) Spheroidal Differential Equation
The Liouville normal form of equation (30.2.1) is …
§30.2(iii) Special Cases
2: 15.10 Hypergeometric Differential Equation
§15.10 Hypergeometric Differential Equation
15.10.1 z ( 1 z ) d 2 w d z 2 + ( c ( a + b + 1 ) z ) d w d z a b w = 0 .
This is the hypergeometric differential equation. … The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
3: 31.2 Differential Equations
§31.2 Differential Equations
§31.2(i) Heun’s Equation
§31.2(v) Heun’s Equation Automorphisms
Composite Transformations
4: 29.2 Differential Equations
§29.2 Differential Equations
§29.2(i) Lamé’s Equation
§29.2(ii) Other Forms
Equation (29.2.10) is a special case of Heun’s equation (31.2.1).
5: 32.2 Differential Equations
§32.2 Differential Equations
§32.2(i) Introduction
The six Painlevé equations P I P VI  are as follows: …
§32.2(ii) Renormalizations
6: 28.2 Definitions and Basic Properties
§28.2(i) Mathieu’s Equation
This is the characteristic equation of Mathieu’s equation (28.2.1). …
§28.2(iv) Floquet Solutions
7: 28.20 Definitions and Basic Properties
§28.20(i) Modified Mathieu’s Equation
When z is replaced by ± i z , (28.2.1) becomes the modified Mathieu’s equation:
28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
28.20.2 ( ζ 2 1 ) w ′′ + ζ w + ( 4 q ζ 2 2 q a ) w = 0 , ζ = cosh z .
Then from §2.7(ii) it is seen that equation (28.20.2) has independent and unique solutions that are asymptotic to ζ 1 / 2 e ± 2 i h ζ as ζ in the respective sectors | ph ( i ζ ) | 3 2 π δ , δ being an arbitrary small positive constant. …
8: 17.13 Integrals
17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
17.13.2 c d ( q x / c ; q ) ( q x / d ; q ) ( x q α / c ; q ) ( x q β / d ; q ) d q x = Γ q ( α ) Γ q ( β ) Γ q ( α + β ) c d c + d ( c / d ; q ) ( d / c ; q ) ( q β c / d ; q ) ( q α d / c ; q ) .
17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
9: 17.2 Calculus
17.2.41 𝒟 q f ( z ) = { f ( z ) f ( z q ) ( 1 q ) z , z 0 , f ( 0 ) , z = 0 ,
17.2.43 𝒟 q ( f ( z ) g ( z ) ) = g ( z ) f [ 1 ] ( z ) + f ( z q ) g [ 1 ] ( z ) .
q -differential equations are considered in §17.6(iv). … If f ( x ) is continuous at x = 0 , then
17.2.45 0 1 f ( x ) d q x = ( 1 q ) j = 0 f ( q j ) q j ,
10: 28.12 Definitions and Basic Properties
§28.12(i) Eigenvalues λ ν + 2 n ( q )
When q = 0 Equation (28.2.16) has simple roots, given by … … If q is a normal value of the corresponding equation (28.2.16), then these functions are uniquely determined as analytic functions of z and q by the normalization …They have the following pseudoperiodic and orthogonality properties: …