About the Project

orthogonal matrix polynomials

AdvancedHelp

(0.002 seconds)

1—10 of 31 matching pages

1: 18.36 Miscellaneous Polynomials
§18.36(iv) Orthogonal Matrix Polynomials
These are matrix-valued polynomials that are orthogonal with respect to a square matrix of measures on the real line. …
2: Bibliography D
  • P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (11), pp. 1335–1425.
  • A. J. Durán and F. A. Grünbaum (2005) A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178 (1-2), pp. 169–190.
  • 3: 18.38 Mathematical Applications
    Random Matrix Theory
    4: Bibliography B
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.
  • 5: 35.4 Partitions and Zonal Polynomials
    6: 18.2 General Orthogonal Polynomials
    §18.2 General Orthogonal Polynomials
    7: 35.1 Special Notation
    a , b complex variables.
    𝟎 zero matrix.
    𝐇 orthogonal matrix.
    The main functions treated in this chapter are the multivariate gamma and beta functions, respectively Γ m ( a ) and B m ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A ν ( 𝐓 ) and (of the second kind) B ν ( 𝐓 ) ; confluent hypergeometric (of the first kind) F 1 1 ( a ; b ; 𝐓 ) or F 1 1 ( a b ; 𝐓 ) and (of the second kind) Ψ ( a ; b ; 𝐓 ) ; Gaussian hypergeometric F 1 2 ( a 1 , a 2 ; b ; 𝐓 ) or F 1 2 ( a 1 , a 2 b ; 𝐓 ) ; generalized hypergeometric F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) or F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) . … Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
    8: 37.17 Hermite Polynomials on d
    §37.17(i) Product Hermite Polynomials
    Obviously, an orthogonal basis of 𝒱 n ( d ) consisting of product Hermite polynomials is given by …
    §37.17(ii) Spherical Hermite Polynomials
    For a positive definite symmetric d × d matrix 𝐀 define the inner product …The matrix 𝐀 can be factorized as 𝐀 = 𝐁 T 𝐁 for some invertible d × d matrix 𝐁 . …
    9: 28.34 Methods of Computation
  • (d)

    Solution of the matrix eigenvalue problem for each of the five infinite matrices that correspond to the linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4). See Zhang and Jin (1996, pp. 479–482) and §3.2(iv).

  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation (§28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • 10: null
    error generating summary