About the Project

of periodic functions

AdvancedHelp

(0.004 seconds)

21—30 of 70 matching pages

21: 24.17 Mathematical Applications
β–Ί
24.17.2 R m ⁑ ( n ) = 1 2 ⁒ ( m 1 ) ! ⁒ a n f ( m ) ⁑ ( x ) ⁒ E ~ m 1 ⁑ ( h x ) ⁒ d x .
β–Ί
24.17.3 S n ⁑ ( x ) = E ~ n ⁑ ( x + 1 2 ⁒ n + 1 2 ) E ~ n ⁑ ( 1 2 ⁒ n + 1 2 ) , n = 0 , 1 , ,
β–Ί
24.17.5 M n ⁑ ( x ) = { B ~ n ⁑ ( x ) B n , n ⁒  even , B ~ n ⁑ ( x + 1 2 ) , n ⁒  odd .
β–Ί
24.17.8 F ⁑ ( x ) = B ~ n ⁑ ( x ) 2 n ⁒ B n
22: Bibliography I
β–Ί
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • β–Ί
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • 23: 1.8 Fourier Series
    β–ΊFormally, if f ⁑ ( x ) is a real- or complex-valued 2 ⁒ Ο€ -periodic function, … β–ΊLet f ⁑ ( x ) be an absolutely integrable function of period 2 ⁒ Ο€ , and continuous except at a finite number of points in any bounded interval. … β–ΊIf a function f ⁑ ( x ) C 2 ⁑ [ 0 , 2 ⁒ Ο€ ] is periodic, with period 2 ⁒ Ο€ , then the series obtained by differentiating the Fourier series for f ⁑ ( x ) term by term converges at every point to f ⁑ ( x ) . …
    24: 25.11 Hurwitz Zeta Function
    β–Ί
    25.11.6 ΢ ⁑ ( s , a ) = 1 a s ⁒ ( 1 2 + a s 1 ) s ⁒ ( s + 1 ) 2 ⁒ 0 B ~ 2 ⁑ ( x ) B 2 ( x + a ) s + 2 ⁒ d x , s 1 , ⁑ s > 1 , a > 0 .
    β–Ί
    25.11.7 ΢ ⁑ ( s , a ) = 1 a s + 1 ( 1 + a ) s ⁒ ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 ⁒ k 2 2 ⁒ k 1 ) ⁒ B 2 ⁒ k 2 ⁒ k ⁒ 1 ( 1 + a ) s + 2 ⁒ k 1 ( s + 2 ⁒ n 2 ⁒ n + 1 ) ⁒ 1 B ~ 2 ⁒ n + 1 ⁑ ( x ) ( x + a ) s + 2 ⁒ n + 1 ⁒ d x , s 1 , a > 0 , n = 1 , 2 , 3 , , ⁑ s > 2 ⁒ n .
    β–Ί
    25.11.19 ΢ ⁑ ( s , a ) = ln ⁑ a a s ⁒ ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ⁒ ( s + 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ln ⁑ ( x + a ) ( x + a ) s + 2 ⁒ d x ( 2 ⁒ s + 1 ) 2 ⁒ 0 B ~ 2 ⁑ ( x ) B 2 ( x + a ) s + 2 ⁒ d x , ⁑ s > 1 , s 1 , a > 0 .
    β–Ί
    25.11.20 ( 1 ) k ⁒ ΢ ( k ) ⁑ ( s , a ) = ( ln ⁑ a ) k a s ⁒ ( 1 2 + a s 1 ) + k ! ⁒ a 1 s ⁒ r = 0 k 1 ( ln ⁑ a ) r r ! ⁒ ( s 1 ) k r + 1 s ⁒ ( s + 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ( ln ⁑ ( x + a ) ) k ( x + a ) s + 2 ⁒ d x + k ⁒ ( 2 ⁒ s + 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ( ln ⁑ ( x + a ) ) k 1 ( x + a ) s + 2 ⁒ d x k ⁒ ( k 1 ) 2 ⁒ 0 ( B ~ 2 ⁑ ( x ) B 2 ) ⁒ ( ln ⁑ ( x + a ) ) k 2 ( x + a ) s + 2 ⁒ d x , ⁑ s > 1 , s 1 , a > 0 .
    25: 4.16 Elementary Properties
    β–Ί
    Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
    β–Ί β–Ίβ–Ί
    x ΞΈ 1 2 ⁒ Ο€ ± ΞΈ Ο€ ± ΞΈ 3 2 ⁒ Ο€ ± ΞΈ 2 ⁒ Ο€ ± ΞΈ
    β–Ί
    26: 28.2 Definitions and Basic Properties
    β–Ί
    §28.2(vi) Eigenfunctions
    27: 24.16 Generalizations
    β–ΊIn no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
    28: 22.16 Related Functions
    β–Ί
    Quasi-Periodicity
    β–Ί
    Quasi-Addition and Quasi-Periodic Formulas
    29: 29.12 Definitions
    β–ΊIn consequence they are doubly-periodic meromorphic functions of z . …
    30: 20.13 Physical Applications
    β–ΊThe functions ΞΈ j ⁑ ( z | Ο„ ) , j = 1 , 2 , 3 , 4 , provide periodic solutions of the partial differential equation … β–ΊThus the classical theta functions are “periodized”, or “anti-periodized”, Gaussians; see Bellman (1961, pp. 18, 19). …