About the Project

negative%20definite

AdvancedHelp

(0.002 seconds)

21—30 of 211 matching pages

21: 12.10 Uniform Asymptotic Expansions for Large Parameter
§12.10(ii) Negative a , 2 a < x <
§12.10(iii) Negative a , < x < 2 a
§12.10(iv) Negative a , 2 a < x < 2 a
§12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
§12.10(viii) Negative a , < x < 2 a . Expansions in Terms of Airy Functions
22: 34.6 Definition: 9 j Symbol
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
23: 34.7 Basic Properties: 9 j Symbol
34.7.1 { j 11 j 12 j 13 j 21 j 22 j 13 j 31 j 31 0 } = ( 1 ) j 12 + j 21 + j 13 + j 31 ( ( 2 j 13 + 1 ) ( 2 j 31 + 1 ) ) 1 2 { j 11 j 12 j 13 j 22 j 21 j 31 } .
34.7.2 j 12 j 34 ( 2 j 12 + 1 ) ( 2 j 34 + 1 ) ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } = δ j 13 , j 13 δ j 24 , j 24 .
34.7.3 j 13 j 24 ( 1 ) 2 j 2 + j 24 + j 23 j 34 ( 2 j 13 + 1 ) ( 2 j 24 + 1 ) { j 1 j 2 j 12 j 3 j 4 j 34 j 13 j 24 j } { j 1 j 3 j 13 j 4 j 2 j 24 j 14 j 23 j } = { j 1 j 2 j 12 j 4 j 3 j 34 j 14 j 23 j } .
34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) .
34.7.5 j ( 2 j + 1 ) { j 11 j 12 j j 21 j 22 j 23 j 31 j 32 j 33 } { j 11 j 12 j j 23 j 33 j } = ( 1 ) 2 j { j 21 j 22 j 23 j 12 j j 32 } { j 31 j 32 j 33 j j 11 j 21 } .
24: 33.14 Definitions and Basic Properties
When ϵ < 0 and > ( ϵ ) 1 / 2 the quantity A ( ϵ , ) may be negative, causing s ( ϵ , ; r ) and c ( ϵ , ; r ) to become imaginary. …
33.14.15 0 ϕ m , ( r ) ϕ n , ( r ) d r = δ m , n .
25: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • 26: 19.13 Integrals of Elliptic Integrals
    For definite and indefinite integrals of complete elliptic integrals see Byrd and Friedman (1971, pp. 610–612, 615), Prudnikov et al. (1990, §§1.11, 2.16), Glasser (1976), Bushell (1987), and Cvijović and Klinowski (1999). For definite and indefinite integrals of incomplete elliptic integrals see Byrd and Friedman (1971, pp. 613, 616), Prudnikov et al. (1990, §§1.10.2, 2.15.2), and Cvijović and Klinowski (1994). …
    27: Bibliography K
  • P. L. Kapitsa (1951b) The computation of the sums of negative even powers of roots of Bessel functions. Doklady Akad. Nauk SSSR (N.S.) 77, pp. 561–564.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 28: 18.34 Bessel Polynomials
    The full system satisfies orthogonality with respect to a (not positive definite) moment functional; see Evans et al. (1993, (2.7)) for the simple expression of the moments μ n . Explicit (but complicated) weight functions w ( x ) taking both positive and negative values have been found such that (18.2.26) holds with d μ ( x ) = w ( x ) d x ; see Durán (1993), Evans et al. (1993), and Maroni (1995). …
    29: 8.13 Zeros
  • (a)

    one negative zero x ( a ) and no positive zeros when 1 2 n < a < 2 2 n ;

  • (b)

    one negative zero x ( a ) and one positive zero x + ( a ) when 2 n < a < 1 2 n .

  • The negative zero x ( a ) decreases monotonically in the interval 1 < a < 0 , and satisfies …
    30: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1995) Uniform asymptotic expansions for oblate spheroidal functions II: Negative separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 125 (4), pp. 719–737.