About the Project

limiting forms as k→0 or k→1

AdvancedHelp

(0.037 seconds)

11—20 of 448 matching pages

11: 1.3 Determinants, Linear Operators, and Spectral Expansions
The minor M j k of the entry a j k in the n th-order determinant det [ a j k ] is the ( n 1 )th-order determinant derived from det [ a j k ] by deleting the j th row and the k th column. …
1.3.9 det [ a j k ] 2 ( k = 1 n a 1 k 2 ) ( k = 1 n a 2 k 2 ) ( k = 1 n a n k 2 ) .
1.3.10 a j 1 a k 1 + a j 2 a k 2 + + a j n a k n = 0
for every distinct pair of j , k , or when one of the factors k = 1 n a j k 2 vanishes. … Let a j , k be defined for all integer values of j and k , and 𝐷 n [ a j , k ] denote the ( 2 n + 1 ) × ( 2 n + 1 ) determinant …
12: 5.16 Sums
5.16.1 k = 1 ( 1 ) k ψ ( k ) = π 2 8 ,
5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .
13: 25.2 Definition and Expansions
25.2.5 γ n = lim m ( k = 1 m ( ln k ) n k ( ln m ) n + 1 n + 1 ) .
25.2.7 ζ ( k ) ( s ) = ( 1 ) k n = 2 ( ln n ) k n s , s > 1 , k = 1 , 2 , 3 , .
25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
25.2.9 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 N s + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k N 1 s 2 k ( s + 2 n 2 n + 1 ) N B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n ; n , N = 1 , 2 , 3 , .
25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
14: 29.5 Special Cases and Limiting Forms
29.5.4 lim k 1 a ν m ( k 2 ) = lim k 1 b ν m + 1 ( k 2 ) = ν ( ν + 1 ) μ 2 ,
29.5.5 lim k 1 𝐸𝑐 ν m ( z , k 2 ) 𝐸𝑐 ν m ( 0 , k 2 ) = lim k 1 𝐸𝑠 ν m + 1 ( z , k 2 ) 𝐸𝑠 ν m + 1 ( 0 , k 2 ) = 1 ( cosh z ) μ F ( 1 2 μ 1 2 ν , 1 2 μ + 1 2 ν + 1 2 1 2 ; tanh 2 z ) , m even,
29.5.6 lim k 1 𝐸𝑐 ν m ( z , k 2 ) d 𝐸𝑐 ν m ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 ν m + 1 ( z , k 2 ) d 𝐸𝑠 ν m + 1 ( z , k 2 ) / d z | z = 0 = tanh z ( cosh z ) μ F ( 1 2 μ 1 2 ν + 1 2 , 1 2 μ + 1 2 ν + 1 3 2 ; tanh 2 z ) , m odd,
If k 0 + and ν in such a way that k 2 ν ( ν + 1 ) = 4 θ (a positive constant), then
lim 𝐸𝑐 ν m ( z , k 2 ) = ce m ( 1 2 π z , θ ) ,
15: 26.10 Integer Partitions: Other Restrictions
The set { n 1 | n ± j ( mod k ) } is denoted by A j , k . … where the sum is over nonnegative integer values of k for which n 1 2 ( 3 k 2 ± k ) 0 . … where the sum is over nonnegative integer values of m for which n 1 2 k m 2 m + 1 2 k m 0 . … It is known that for k > 3 , p ( 𝒟 k , n ) p ( A 1 , k + 3 , n ) , with strict inequality for n sufficiently large, provided that k = 2 m 1 , m = 3 , 4 , 5 , or k 32 ; see Yee (2004). … where I 1 ( x ) is the modified Bessel function (§10.25(ii)), and …
16: 5.17 Barnes’ G -Function (Double Gamma Function)
5.17.3 G ( z + 1 ) = ( 2 π ) z / 2 exp ( 1 2 z ( z + 1 ) 1 2 γ z 2 ) k = 1 ( ( 1 + z k ) k exp ( z + z 2 2 k ) ) .
5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k .
5.17.7 C = lim n ( k = 1 n k ln k ( 1 2 n 2 + 1 2 n + 1 12 ) ln n + 1 4 n 2 ) = γ + ln ( 2 π ) 12 ζ ( 2 ) 2 π 2 = 1 12 ζ ( 1 ) ,
17: 5.19 Mathematical Applications
a k = k ( 3 k + 2 ) ( 2 k + 1 ) ( k + 1 ) .
5.19.2 a k = 2 k + 2 3 1 k + 1 2 1 k + 1 = ( 1 k + 1 1 k + 1 2 ) 2 ( 1 k + 1 1 k + 2 3 ) .
18: 19.3 Graphics
See accompanying text
Figure 19.3.3: F ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then it has the value K ( 1 / k ) / k : put c = k 2 in (19.25.5) and use (19.25.1). Magnify 3D Help
See accompanying text
Figure 19.3.4: E ( ϕ , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 2 , 0 sin 2 ϕ 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then it has the value k E ( 1 / k ) + ( k 2 / k ) K ( 1 / k ) , with limit 1 as k 2 1 + : put c = k 2 in (19.25.7) and use (19.25.1). Magnify 3D Help
See accompanying text
Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then by (19.7.4) it reduces to Π ( 2 / k 2 , 1 / k ) / k , k 2 2 , with Cauchy principal value ( K ( 1 / k ) Π ( 1 2 , 1 / k ) ) / k , 1 < k 2 < 2 , by (19.6.5). … Magnify 3D Help
See accompanying text
Figure 19.3.9: ( K ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . …On the branch cut ( k 2 1 ) it is infinite at k 2 = 1 , and has the value K ( 1 / k ) / k when k 2 > 1 . Magnify 3D Help
See accompanying text
Figure 19.3.11: ( E ( k ) ) as a function of complex k 2 for 2 ( k 2 ) 2 , 2 ( k 2 ) 2 . …On the branch cut ( k 2 > 1 ) it has the value k E ( 1 / k ) + ( k 2 / k ) K ( 1 / k ) , with limit 1 as k 2 1 + . Magnify 3D Help
19: 29.7 Asymptotic Expansions
29.7.3 τ 0 = 1 2 3 ( 1 + k 2 ) ( 1 + p 2 ) ,
The same Poincaré expansion holds for b ν m + 1 ( k 2 ) , since …
29.7.6 τ 2 = 1 2 10 ( 1 + k 2 ) ( 1 k 2 ) 2 ( 5 p 4 + 34 p 2 + 9 ) ,
29.7.7 τ 3 = p 2 14 ( ( 1 + k 2 ) 4 ( 33 p 4 + 410 p 2 + 405 ) 24 k 2 ( 1 + k 2 ) 2 ( 7 p 4 + 90 p 2 + 95 ) + 16 k 4 ( 9 p 4 + 130 p 2 + 173 ) ) ,
29.7.8 τ 4 = 1 2 16 ( ( 1 + k 2 ) 5 ( 63 p 6 + 1260 p 4 + 2943 p 2 + 486 ) 8 k 2 ( 1 + k 2 ) 3 ( 49 p 6 + 1010 p 4 + 2493 p 2 + 432 ) + 16 k 4 ( 1 + k 2 ) ( 35 p 6 + 760 p 4 + 2043 p 2 + 378 ) ) .
20: 26.9 Integer Partitions: Restricted Number and Part Size
It is also equal to the number of lattice paths from ( 0 , 0 ) to ( m , k ) that have exactly n vertices ( h , j ) , 1 h m , 1 j k , above and to the left of the lattice path. …
26.9.5 n = 0 p k ( n ) q n = j = 1 k 1 1 q j = 1 + m = 1 [ k + m 1 m ] q q m ,
26.9.8 p k ( n ) = p k ( n k ) + p k 1 ( n ) ;