About the Project

large order

AdvancedHelp

(0.002 seconds)

51—60 of 89 matching pages

51: 8.18 Asymptotic Expansions of I x ( a , b )
§8.18(i) Large Parameters, Fixed x
§8.18(ii) Large Parameters: Uniform Asymptotic Expansions
Large a , Fixed b
Symmetric Case
General Case
52: 13.20 Uniform Asymptotic Approximations for Large μ
§13.20 Uniform Asymptotic Approximations for Large μ
§13.20(i) Large μ , Fixed κ
§13.20(v) Large μ , Other Expansions
53: 28.4 Fourier Series
28.4.21 A 2 s 0 ( q ) = ( ( 1 ) s 2 ( s ! ) 2 ( q 4 ) s + O ( q s + 2 ) ) A 0 0 ( q ) ,
28.4.22 A m + 2 s m ( q ) B m + 2 s m ( q ) } = ( ( 1 ) s m ! s ! ( m + s ) ! ( q 4 ) s + O ( q s + 1 ) ) { A m m ( q ) , B m m ( q ) ,
28.4.23 A m 2 s m ( q ) B m 2 s m ( q ) } = ( ( m s 1 ) ! s ! ( m 1 ) ! ( q 4 ) s + O ( q s + 1 ) ) { A m m ( q ) , B m m ( q ) .
§28.4(vii) Asymptotic Forms for Large m
28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
54: 11.9 Lommel Functions
11.9.1 d 2 w d z 2 + 1 z d w d z + ( 1 ν 2 z 2 ) w = z μ 1
11.9.3 s μ , ν ( z ) = z μ + 1 k = 0 ( 1 ) k z 2 k a k + 1 ( μ , ν ) ,
§11.9(iii) Asymptotic Expansion
For uniform asymptotic expansions, for large ν and fixed μ = 1 , 0 , 1 , 2 , , of solutions of the inhomogeneous modified Bessel differential equation that corresponds to (11.9.1) see Olver (1997b, pp. 388–390). …
55: Bibliography T
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1987) On the computation of the incomplete gamma functions for large values of the parameters. In Algorithms for approximation (Shrivenham, 1985), Inst. Math. Appl. Conf. Ser. New Ser., Vol. 10, pp. 479–489.
  • N. M. Temme (2003) Large parameter cases of the Gauss hypergeometric function. J. Comput. Appl. Math. 153 (1-2), pp. 441–462.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • J. Todd (1954) Evaluation of the exponential integral for large complex arguments. J. Research Nat. Bur. Standards 52, pp. 313–317.
  • 56: 8.11 Asymptotic Approximations and Expansions
    §8.11 Asymptotic Approximations and Expansions
    §8.11(i) Large z , Fixed a
    §8.11(ii) Large a , Fixed z
    §8.11(iii) Large a , Fixed z / a
    57: 13.21 Uniform Asymptotic Approximations for Large κ
    §13.21 Uniform Asymptotic Approximations for Large κ
    §13.21(i) Large κ , Fixed μ
    §13.21(ii) Large κ , 0 μ ( 1 δ ) κ
    §13.21(iv) Large κ , Other Expansions
    58: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2013a) The third Appell function for one large variable. J. Approx. Theory 165, pp. 60–69.
  • C. Ferreira, J. L. López, and E. Pérez Sinusía (2005) Incomplete gamma functions for large values of their variables. Adv. in Appl. Math. 34 (3), pp. 467–485.
  • C. Ferreira, J. L. López, and E. P. Sinusía (2013b) The second Appell function for one large variable. Mediterr. J. Math. 10 (4), pp. 1853–1865.
  • J. L. Fields (1973) Uniform asymptotic expansions of certain classes of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 4 (3), pp. 482–507.
  • 59: 2.6 Distributional Methods
    To derive an asymptotic expansion of 𝒮 f ( z ) for large values of | z | , with | ph z | < π , we assume that f ( t ) possesses an asymptotic expansion of the form … On substituting (2.6.15) into (2.6.26) and interchanging the order of integration, the right-hand side of (2.6.26) becomes … The Riemann–Liouville fractional integral of order μ is defined by …We now derive an asymptotic expansion of 𝐼 μ f ( x ) for large positive values of x . … For rigorous derivations of these results and also order estimates for δ n ( x ) , see Wong (1979) and Wong (1989, Chapter 6).
    60: 36.12 Uniform Approximation of Integrals
    where k is a large real parameter and 𝐲 = { y 1 , y 2 , } is a set of additional (nonasymptotic) parameters. … The leading-order uniform asymptotic approximation is given by
    36.12.3 I ( 𝐲 , k ) = exp ( i k A ( 𝐲 ) ) k 1 / ( K + 2 ) m = 0 K a m ( 𝐲 ) k m / ( K + 2 ) ( δ m , 0 ( 1 δ m , 0 ) i z m ) Ψ K ( 𝐳 ( 𝐲 ; k ) ) ( 1 + O ( 1 k ) ) ,
    Correspondence between the u j ( 𝐲 ) and the t j ( 𝐱 ) is established by the order of critical points along the real axis when 𝐲 and 𝐱 are such that these critical points are all real, and by continuation when some or all of the critical points are complex. … For example, the diffraction catastrophe Ψ 2 ( x , y ; k ) defined by (36.2.10), and corresponding to the Pearcey integral (36.2.14), can be approximated by the Airy function Ψ 1 ( ξ ( x , y ; k ) ) when k is large, provided that x and y are not small. …