About the Project

isolated%20singularity

AdvancedHelp

(0.001 seconds)

11—20 of 174 matching pages

11: 31.14 General Fuchsian Equation
The general second-order Fuchsian equation with N + 1 regular singularities at z = a j , j = 1 , 2 , , N , and at , is given by
31.14.1 d 2 w d z 2 + ( j = 1 N γ j z a j ) d w d z + ( j = 1 N q j z a j ) w = 0 , j = 1 N q j = 0 .
The exponents at the finite singularities a j are { 0 , 1 γ j } and those at are { α , β } , where …The three sets of parameters comprise the singularity parameters a j , the exponent parameters α , β , γ j , and the N 2 free accessory parameters q j . …
31.14.3 w ( z ) = ( j = 1 N ( z a j ) γ j / 2 ) W ( z ) ,
12: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry (1981) Singularities in Waves and Rays. In Les Houches Lecture Series Session XXXV, R. Balian, M. Kléman, and J.-P. Poirier (Eds.), Vol. 35, pp. 453–543.
  • N. Bleistein (1966) Uniform asymptotic expansions of integrals with stationary point near algebraic singularity. Comm. Pure Appl. Math. 19, pp. 353–370.
  • N. Bleistein (1967) Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities. J. Math. Mech. 17, pp. 533–559.
  • 13: Bibliography S
  • A. Sidi (2004) Euler-Maclaurin expansions for integrals with endpoint singularities: A new perspective. Numer. Math. 98 (2), pp. 371–387.
  • A. Sidi (2010) A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl. Math. Comput. 216 (11), pp. 3378–3385.
  • A. Sidi (2012a) Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities. Math. Comp. 81 (280), pp. 2159–2173.
  • A. Sidi (2012b) Euler-Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities. Constr. Approx. 36 (3), pp. 331–352.
  • B. Simon (1995) Operators with Singular Continuous Spectrum: I. General Operators. Annals of Mathematics 141 (1), pp. 131–145.
  • 14: 8 Incomplete Gamma and Related
    Functions
    15: 28 Mathieu Functions and Hill’s Equation
    16: 31.1 Special Notation
    Sometimes the parameters are suppressed.
    17: Bibliography K
  • A. A. Kapaev (1991) Essential singularity of the Painlevé function of the second kind and the nonlinear Stokes phenomenon. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187, pp. 139–170 (Russian).
  • D. Karp and S. M. Sitnik (2007) Asymptotic approximations for the first incomplete elliptic integral near logarithmic singularity. J. Comput. Appl. Math. 205 (1), pp. 186–206.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • 18: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 19: 23 Weierstrass Elliptic and Modular
    Functions
    20: Bibliography M
  • O. I. Marichev (1984) On the Representation of Meijer’s G -Function in the Vicinity of Singular Unity. In Complex Analysis and Applications ’81 (Varna, 1981), pp. 383–398.
  • G. F. Miller (1966) On the convergence of the Chebyshev series for functions possessing a singularity in the range of representation. SIAM J. Numer. Anal. 3 (3), pp. 390–409.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • M. E. Muldoon (1970) Singular integrals whose kernels involve certain Sturm-Liouville functions. I. J. Math. Mech. 19 (10), pp. 855–873.
  • B. T. M. Murphy and A. D. Wood (1997) Hyperasymptotic solutions of second-order ordinary differential equations with a singularity of arbitrary integer rank. Methods Appl. Anal. 4 (3), pp. 250–260.