About the Project

inverse linear

AdvancedHelp

(0.001 seconds)

11—20 of 22 matching pages

11: Bibliography S
β–Ί
  • D. Shanks (1955) Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, pp. 1–42.
  • β–Ί
  • G. E. Shilov (2013) Introduction to the Theory of Linear Spaces. Martino, Mansfield Center, CT.
  • β–Ί
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • β–Ί
  • R. Spigler and M. Vianello (1992) Liouville-Green approximations for a class of linear oscillatory difference equations of the second order. J. Comput. Appl. Math. 41 (1-2), pp. 105–116.
  • β–Ί
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • 12: Bibliography J
    β–Ί
  • D. J. Jeffrey, R. M. Corless, D. E. G. Hare, and D. E. Knuth (1995) Sur l’inversion de y Ξ± ⁒ e y au moyen des nombres de Stirling associés. C. R. Acad. Sci. Paris Sér. I Math. 320 (12), pp. 1449–1452.
  • β–Ί
  • M. Jimbo and T. Miwa (1981) Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Phys. D 2 (3), pp. 407–448.
  • 13: 15.12 Asymptotic Approximations
    β–Ί
  • (d)

    ⁑ z > 1 2 and Ξ± 1 2 ⁒ Ο€ + Ξ΄ ph ⁑ c Ξ± + + 1 2 ⁒ Ο€ Ξ΄ , where

    15.12.1 Ξ± ± = arctan ⁑ ( ph ⁑ z ph ⁑ ( 1 z ) βˆ“ Ο€ ln ⁑ | 1 z 1 | ) ,

    with z restricted so that ± Ξ± ± [ 0 , 1 2 ⁒ Ο€ ) .

  • β–Ί
    15.12.6 ΢ = arccosh ⁑ z .
    β–Ί
    15.12.10 ΢ = arccosh ⁑ ( 1 4 ⁒ z 1 ) ,
    β–ΊBy combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F ⁑ ( a + e 1 ⁒ Ξ» , b + e 2 ⁒ Ξ» ; c + e 3 ⁒ Ξ» ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …
    14: 19.2 Definitions
    β–ΊBulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). … β–ΊIn (19.2.18)–(19.2.22) the inverse trigonometric and hyperbolic functions assume their principal values (§§4.23(ii) and 4.37(ii)). When x and y are positive, R C ⁑ ( x , y ) is an inverse circular function if x < y and an inverse hyperbolic function (or logarithm) if x > y : β–Ί
    19.2.18 R C ⁑ ( x , y ) = 1 y x ⁒ arctan ⁑ y x x = 1 y x ⁒ arccos ⁑ x / y , 0 x < y ,
    β–Ί
    19.2.19 R C ⁑ ( x , y ) = 1 x y ⁒ arctanh ⁑ x y x = 1 x y ⁒ ln ⁑ x + x y y , 0 < y < x .
    15: Bibliography R
    β–Ί
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • β–Ί
  • I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin (1990) Fourier analysis and signal processing by use of the Möbius inversion formula. IEEE Trans. Acoustics, Speech, Signal Processing 38, pp. 458–470.
  • β–Ί
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • β–Ί
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • 16: 24.5 Recurrence Relations
    §24.5 Recurrence Relations
    β–Ί
    §24.5(iii) Inversion Formulas
    17: Bibliography K
    β–Ί
  • A. A. Kapaev (2004) Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A 37 (46), pp. 11149–11167.
  • β–Ί
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • β–Ί
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993) Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge.
  • β–Ί
  • J. J. Kovacic (1986) An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1), pp. 3–43.
  • β–Ί
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.
  • 18: 3.11 Approximation Techniques
    β–ΊAlso, in cases where f ⁒ ( x ) satisfies a linear ordinary differential equation with polynomial coefficients, the expansion (3.11.11) can be substituted in the differential equation to yield a recurrence relation satisfied by the c n . … β–ΊWith b 0 = 1 , the last q equations give b 1 , , b q as the solution of a system of linear equations. … β–Ί
    Laplace Transform Inversion
    β–ΊNumerical inversion of the Laplace transform (§1.14(iii)) … β–ΊMore generally, let f ⁒ ( x ) be approximated by a linear combination …
    19: Bibliography I
    β–Ί
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ⁒ ( z ) i ⁒ J 1 ⁒ ( z ) and of Bessel functions J m ⁒ ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • β–Ί
  • Inverse Symbolic Calculator (website) Centre for Experimental and Constructive Mathematics, Simon Fraser University, Canada.
  • β–Ί
  • A. R. Its and A. A. Kapaev (2003) Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16 (1), pp. 363–386.
  • 20: 10.21 Zeros
    β–ΊThe functions ρ Ξ½ ⁑ ( t ) and Οƒ Ξ½ ⁑ ( t ) are related to the inverses of the phase functions ΞΈ Ξ½ ⁑ ( x ) and Ο• Ξ½ ⁑ ( x ) defined in §10.18(i): if Ξ½ 0 , then … β–Ί
    Ο• Ξ½ ⁑ ( y Ξ½ , m ) = m ⁒ Ο€ , m = 1 , 2 , .
    β–ΊNext, z ⁑ ( ΞΆ ) is the inverse of the function ΞΆ = ΞΆ ⁒ ( z ) defined by (10.20.3). … β–Ί
    10.21.45 h ⁑ ( ΢ ) = ( 4 ⁒ ΢ / ( 1 z 2 ) ) 1 4 .
    β–ΊFor describing the distribution of complex zeros by methods based on the Liouville–Green (WKB) approximation for linear homogeneous second-order differential equations, see Segura (2013). …