About the Project

invariants

AdvancedHelp

(0.001 seconds)

1—10 of 38 matching pages

1: 23.3 Differential Equations
β–Ί
§23.3(i) Invariants, Roots, and Discriminant
β–ΊThe lattice invariants are defined by … β–ΊGiven g 2 ⁑ and g 3 ⁑ there is a unique lattice 𝕃 such that (23.3.1) and (23.3.2) are satisfied. …Similarly for ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) and Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) . As functions of g 2 ⁑ and g 3 ⁑ , ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) and ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) are meromorphic and Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) is entire. …
2: 23.4 Graphics
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.1: ⁑ ( x ; g 2 ⁑ , 0 ) for 0 x 9 , g 2 ⁑ = 0. … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.2: ⁑ ( x ; 0 , g 3 ⁑ ) for 0 x 9 , g 3 ⁑ = 0. … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.3: ΞΆ ⁑ ( x ; g 2 ⁑ , 0 ) for 0 x 8 , g 2 ⁑ = 0. … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.4: ΞΆ ⁑ ( x ; 0 , g 3 ⁑ ) for 0 x 8 , g 3 ⁑ = 0. … Magnify
β–Ί
β–ΊSee accompanying textβ–Ί
Figure 23.4.5: Οƒ ⁑ ( x ; g 2 ⁑ , 0 ) for 5 x 5 , g 2 ⁑ = 0. … Magnify
3: 23.14 Integrals
β–Ί β–Ί
23.14.2 2 ⁑ ( z ) ⁒ d z = 1 6 ⁒ ⁑ ( z ) + 1 12 ⁒ g 2 ⁑ ⁒ z ,
β–Ί
4: 23.19 Interrelations
β–Ί
23.19.2 J ⁑ ( Ο„ ) = 4 27 ⁒ ( 1 Ξ» ⁑ ( Ο„ ) + Ξ» 2 ⁑ ( Ο„ ) ) 3 ( Ξ» ⁑ ( Ο„ ) ⁒ ( 1 Ξ» ⁑ ( Ο„ ) ) ) 2 ,
β–Ί
23.19.3 J ⁑ ( Ο„ ) = g 2 3 ⁑ g 2 3 ⁑ 27 ⁒ g 3 2 ⁑ ,
β–Ίwhere g 2 ⁑ , g 3 ⁑ are the invariants of the lattice 𝕃 with generators 1 and Ο„ ; see §23.3(i). …
5: 23.2 Definitions and Periodic Properties
β–Ί
23.2.4 ⁑ ( z ) = 1 z 2 + w 𝕃 βˆ– { 0 } ( 1 ( z w ) 2 1 w 2 ) ,
β–Ί
23.2.5 ΞΆ ⁑ ( z ) = 1 z + w 𝕃 βˆ– { 0 } ( 1 z w + 1 w + z w 2 ) ,
β–Ί
23.2.6 Οƒ ⁑ ( z ) = z ⁒ w 𝕃 βˆ– { 0 } ( ( 1 z w ) ⁒ exp ⁑ ( z w + z 2 2 ⁒ w 2 ) ) .
β–Ί β–Ί
6: 23.10 Addition Theorems and Other Identities
β–Ί
23.10.1 ⁑ ( u + v ) = 1 4 ⁒ ( ⁑ ( u ) ⁑ ( v ) ⁑ ( u ) ⁑ ( v ) ) 2 ⁑ ( u ) ⁑ ( v ) ,
β–Ί
23.10.2 ΞΆ ⁑ ( u + v ) = ΞΆ ⁑ ( u ) + ΞΆ ⁑ ( v ) + 1 2 ⁒ ΞΆ ′′ ⁑ ( u ) ΞΆ ′′ ⁑ ( v ) ΞΆ ⁑ ( u ) ΞΆ ⁑ ( v ) ,
β–Ί
23.10.3 Οƒ ⁑ ( u + v ) ⁒ Οƒ ⁑ ( u v ) Οƒ 2 ⁑ ( u ) ⁒ Οƒ 2 ⁑ ( v ) = ⁑ ( v ) ⁑ ( u ) ,
β–Ί β–ΊAlso, when 𝕃 is replaced by c ⁒ 𝕃 the lattice invariants g 2 ⁑ and g 3 ⁑ are divided by c 4 and c 6 , respectively. …
7: 23.9 Laurent and Other Power Series
β–Ί
23.9.2 ⁑ ( z ) = 1 z 2 + n = 2 c n ⁒ z 2 ⁒ n 2 , 0 < | z | < | z 0 | ,
β–Ί
23.9.3 ΢ ⁑ ( z ) = 1 z n = 2 c n 2 ⁒ n 1 ⁒ z 2 ⁒ n 1 , 0 < | z | < | z 0 | .
β–Ί
c 2 = 1 20 ⁒ g 2 ⁑ ,
β–Ί
c 3 = 1 28 ⁒ g 3 ⁑ ,
β–Ί
23.9.7 Οƒ ⁑ ( z ) = m , n = 0 a m , n ⁒ ( 10 ⁒ c 2 ) m ⁒ ( 56 ⁒ c 3 ) n ⁒ z 4 ⁒ m + 6 ⁒ n + 1 ( 4 ⁒ m + 6 ⁒ n + 1 ) ! ,
8: 23.23 Tables
β–ΊAbramowitz and Stegun (1964) also includes other tables to assist the computation of the Weierstrass functions, for example, the generators as functions of the lattice invariants g 2 ⁑ and g 3 ⁑ . …
9: 23.7 Quarter Periods
β–Ί
23.7.1 ⁑ ( 1 2 ⁒ Ο‰ 1 ) = e 1 ⁑ + ( e 1 ⁑ e 3 ⁑ ) ⁒ ( e 1 ⁑ e 2 ⁑ ) = e 1 ⁑ + Ο‰ 1 2 ⁒ ( K ⁑ ( k ) ) 2 ⁒ k ,
β–Ί
23.7.2 ⁑ ( 1 2 ⁒ Ο‰ 2 ) = e 2 ⁑ i ⁒ ( e 1 ⁑ e 2 ⁑ ) ⁒ ( e 2 ⁑ e 3 ⁑ ) = e 2 ⁑ i ⁒ Ο‰ 1 2 ⁒ ( K ⁑ ( k ) ) 2 ⁒ k ⁒ k ,
β–Ί
23.7.3 ⁑ ( 1 2 ⁒ Ο‰ 3 ) = e 3 ⁑ ( e 1 ⁑ e 3 ⁑ ) ⁒ ( e 2 ⁑ e 3 ⁑ ) = e 3 ⁑ Ο‰ 1 2 ⁒ ( K ⁑ ( k ) ) 2 ⁒ k ,
10: 23.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ί
𝕃 lattice in β„‚ .
Ξ” discriminant g 2 3 ⁑ 27 ⁒ g 3 2 ⁑ .
β–ΊThe main functions treated in this chapter are the Weierstrass -function ⁑ ( z ) = ⁑ ( z | 𝕃 ) = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass zeta function ΞΆ ⁑ ( z ) = ΞΆ ⁑ ( z | 𝕃 ) = ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass sigma function Οƒ ⁑ ( z ) = Οƒ ⁑ ( z | 𝕃 ) = Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the elliptic modular function Ξ» ⁑ ( Ο„ ) ; Klein’s complete invariant J ⁑ ( Ο„ ) ; Dedekind’s eta function Ξ· ⁑ ( Ο„ ) . …