About the Project

Weierstrass zeta function

AdvancedHelp

(0.002 seconds)

1—10 of 23 matching pages

1: 23.1 Special Notation
β–ΊThe main functions treated in this chapter are the Weierstrass -function ⁑ ( z ) = ⁑ ( z | 𝕃 ) = ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass zeta function ΞΆ ⁑ ( z ) = ΞΆ ⁑ ( z | 𝕃 ) = ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the Weierstrass sigma function Οƒ ⁑ ( z ) = Οƒ ⁑ ( z | 𝕃 ) = Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) ; the elliptic modular function Ξ» ⁑ ( Ο„ ) ; Klein’s complete invariant J ⁑ ( Ο„ ) ; Dedekind’s eta function Ξ· ⁑ ( Ο„ ) . …
2: 23.14 Integrals
3: 23.2 Definitions and Periodic Properties
β–Ί
23.2.5 ΞΆ ⁑ ( z ) = 1 z + w 𝕃 βˆ– { 0 } ( 1 z w + 1 w + z w 2 ) ,
β–Ί β–Ί β–Ί ⁑ ( z ) and ΞΆ ⁑ ( z ) are meromorphic functions with poles at the lattice points. … β–ΊThe function ΞΆ ⁑ ( z ) is quasi-periodic: for j = 1 , 2 , 3 , …
4: 25.1 Special Notation
β–ΊThe main related functions are the Hurwitz zeta function ΞΆ ⁑ ( s , a ) , the dilogarithm Li 2 ⁑ ( z ) , the polylogarithm Li s ⁑ ( z ) (also known as Jonquière’s function Ο• ⁑ ( z , s ) ), Lerch’s transcendent Ξ¦ ⁑ ( z , s , a ) , and the Dirichlet L -functions L ⁑ ( s , Ο‡ ) .
5: 23.3 Differential Equations
β–ΊAs functions of g 2 ⁑ and g 3 ⁑ , ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) and ΞΆ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) are meromorphic and Οƒ ⁑ ( z ; g 2 ⁑ , g 3 ⁑ ) is entire. …
6: 23.4 Graphics
β–ΊLine graphs of the Weierstrass functions ⁑ ( x ) , ΞΆ ⁑ ( x ) , and Οƒ ⁑ ( x ) , illustrating the lemniscatic and equianharmonic cases. … β–ΊSurfaces for the Weierstrass functions ⁑ ( z ) , ΞΆ ⁑ ( z ) , and Οƒ ⁑ ( z ) . …
7: 23.11 Integral Representations
β–Ί
23.11.3 ΞΆ ⁑ ( z ) = 1 z + 0 ( e s ⁒ ( z ⁒ s sinh ⁑ ( z ⁒ s ) ) ⁒ f 1 ⁑ ( s , Ο„ ) e i ⁒ Ο„ ⁒ s ⁒ ( z ⁒ s sin ⁑ ( z ⁒ s ) ) ⁒ f 2 ⁑ ( s , Ο„ ) ) ⁒ d s ,
8: 23.6 Relations to Other Functions
β–Ί β–Ί
23.6.27 ΞΆ ⁑ ( z | 𝕃 1 ) ΞΆ ⁑ ( z + 2 ⁒ K ⁑ | 𝕃 1 ) + ΞΆ ⁑ ( 2 ⁒ K ⁑ | 𝕃 1 ) = ns ⁑ ( z , k ) ,
β–Ί
23.6.28 ΞΆ ⁑ ( z | 𝕃 2 ) ΞΆ ⁑ ( z + 2 ⁒ K ⁑ | 𝕃 2 ) + ΞΆ ⁑ ( 2 ⁒ K ⁑ | 𝕃 2 ) = ds ⁑ ( z , k ) ,
β–Ί
23.6.29 ΞΆ ⁑ ( z | 𝕃 3 ) ΞΆ ⁑ ( z + 2 ⁒ i ⁒ K ⁑ | 𝕃 3 ) ΞΆ ⁑ ( 2 ⁒ i ⁒ K ⁑ | 𝕃 3 ) = cs ⁑ ( z , k ) .
β–ΊFor representations of general elliptic functions23.2(iii)) in terms of Οƒ ⁑ ( z ) and ⁑ ( z ) see Lawden (1989, §§8.9, 8.10), and for expansions in terms of ΞΆ ⁑ ( z ) see Lawden (1989, §8.11). …
9: 23.10 Addition Theorems and Other Identities
β–Ί
23.10.2 ΞΆ ⁑ ( u + v ) = ΞΆ ⁑ ( u ) + ΞΆ ⁑ ( v ) + 1 2 ⁒ ΞΆ ′′ ⁑ ( u ) ΞΆ ′′ ⁑ ( v ) ΞΆ ⁑ ( u ) ΞΆ ⁑ ( v ) ,
β–Ί
23.10.6 ( ΢ ⁑ ( u ) + ΢ ⁑ ( v ) + ΢ ⁑ ( w ) ) 2 + ΢ ⁑ ( u ) + ΢ ⁑ ( v ) + ΢ ⁑ ( w ) = 0 .
β–Ί
23.10.9 ΞΆ ⁑ ( 2 ⁒ z ) = 2 ⁒ ΞΆ ⁑ ( z ) + 1 2 ⁒ ΞΆ ′′′ ⁑ ( z ) ΞΆ ′′ ⁑ ( z ) ,
β–Ί
23.10.12 n ⁒ ΞΆ ⁑ ( n ⁒ z ) = n ⁒ ( n 1 ) ⁒ ( Ξ· 1 + Ξ· 3 ) + j = 0 n 1 β„“ = 0 n 1 ΞΆ ⁑ ( z + 2 ⁒ j n ⁒ Ο‰ 1 + 2 ⁒ β„“ n ⁒ Ο‰ 3 ) ,
β–Ί
23.10.18 ΞΆ ⁑ ( c ⁒ z | c ⁒ 𝕃 ) = c 1 ⁒ ΞΆ ⁑ ( z | 𝕃 ) ,
10: 23.22 Methods of Computation
β–ΊThe functions ΞΆ ⁑ ( z ) and Οƒ ⁑ ( z ) are computed in a similar manner: the former by replacing u and z in (23.6.13) by z and Ο€ ⁒ z / ( 2 ⁒ Ο‰ 1 ) , respectively, and also referring to (23.6.8); the latter by applying (23.6.9). …