Weierstrass sigma function
(0.003 seconds)
1—10 of 14 matching pages
1: 23.1 Special Notation
…
βΊThe main functions treated in this chapter are the Weierstrass
-function
; the Weierstrass zeta function
; the Weierstrass sigma function
; the elliptic modular function
; Klein’s complete invariant ; Dedekind’s eta function
.
…
2: 23.2 Definitions and Periodic Properties
…
βΊ
§23.2(ii) Weierstrass Elliptic Functions
… βΊ
23.2.6
…
βΊThe function
is entire and odd, with simple zeros at the lattice points.
…
βΊFor , the function
satisfies
…
βΊFor further quasi-periodic properties of the -function see Lawden (1989, §6.2).
3: 23.10 Addition Theorems and Other Identities
…
βΊ
23.10.3
…
βΊFor further addition-type identities for the -function see Lawden (1989, §6.4).
…
βΊ
23.10.10
…
βΊ
23.10.14
…
βΊ
23.10.19
…
4: 23.6 Relations to Other Functions
…
βΊ
23.6.9
βΊ
23.6.10
…
βΊ
23.6.15
.
βΊFor further results for the -function see Lawden (1989, §6.2).
…
βΊFor representations of the Jacobi functions
, , and as quotients of -functions see Lawden (1989, §§6.2, 6.3).
…
5: 23.3 Differential Equations
…
βΊAs functions of and , and are meromorphic and is entire.
…
6: 23.4 Graphics
…
βΊLine graphs of the Weierstrass functions
, , and , illustrating the lemniscatic and equianharmonic cases.
…
βΊSurfaces for the Weierstrass functions
, , and .
…
7: 23.9 Laurent and Other Power Series
…
βΊ
23.9.7
…
8: 23.12 Asymptotic Approximations
…
βΊ
23.12.3
…