About the Project

integrals of modified Bessel functions

AdvancedHelp

(0.021 seconds)

31—40 of 61 matching pages

31: 7.6 Series Expansions
§7.6(i) Power Series
§7.6(ii) Expansions in Series of Spherical Bessel Functions
7.6.8 erf z = 2 z π n = 0 ( 1 ) n ( 𝗂 2 n ( 1 ) ( z 2 ) 𝗂 2 n + 1 ( 1 ) ( z 2 ) ) ,
7.6.9 erf ( a z ) = 2 z π e ( 1 2 a 2 ) z 2 n = 0 T 2 n + 1 ( a ) 𝗂 n ( 1 ) ( 1 2 z 2 ) , 1 a 1 .
7.6.10 C ( z ) = z n = 0 𝗃 2 n ( 1 2 π z 2 ) ,
32: 9.17 Methods of Computation
§9.17(iii) Integral Representations
Among the integral representations of the Airy functions the Stieltjes transform (9.10.18) furnishes a way of computing Ai ( z ) in the complex plane, once values of this function can be generated on the positive real axis. … The second method is to apply generalized Gauss–Laguerre quadrature (§3.5(v)) to the integral (9.5.8). …
§9.17(iv) Via Bessel Functions
In consequence of §9.6(i), algorithms for generating Bessel functions, Hankel functions, and modified Bessel functions10.74) can also be applied to Ai ( z ) , Bi ( z ) , and their derivatives. …
33: 8.7 Series Expansions
§8.7 Series Expansions
For the functions e n ( z ) , 𝗂 n ( 1 ) ( z ) , and L n ( α ) ( x ) see (8.4.11), §§10.47(ii), and 18.3, respectively. …
8.7.4 γ ( a , x ) = Γ ( a ) x 1 2 a e x n = 0 e n ( 1 ) x 1 2 n I n + a ( 2 x 1 / 2 ) , a 0 , 1 , 2 , .
8.7.5 γ ( a , z ) = e 1 2 z n = 0 ( 1 a ) n Γ ( n + a + 1 ) ( 2 n + 1 ) 𝗂 n ( 1 ) ( 1 2 z ) .
For an expansion for γ ( a , i x ) in series of Bessel functions J n ( x ) that converges rapidly when a > 0 and x ( 0 ) is small or moderate in magnitude see Barakat (1961).
34: Bibliography L
  • A. Laforgia (1991) Bounds for modified Bessel functions. J. Comput. Appl. Math. 34 (3), pp. 263–267.
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • K. V. Leung and S. S. Ghaderpanah (1979) An application of the finite element approximation method to find the complex zeros of the modified Bessel function K n ( z ) . Math. Comp. 33 (148), pp. 1299–1306.
  • S. Lewanowicz (1991) Evaluation of Bessel function integrals with algebraic singularities. J. Comput. Appl. Math. 37 (1-3), pp. 101–112.
  • Y. L. Luke (1962) Integrals of Bessel Functions. McGraw-Hill Book Co., Inc., New York.
  • 35: 11.13 Methods of Computation
    §11.13(i) Introduction
    Although the power-series expansions (11.2.1) and (11.2.2), and the Bessel-function expansions of §11.4(iv) converge for all finite values of z , they are cumbersome to use when | z | is large owing to slowness of convergence and cancellation. … Subsequently 𝐇 ν ( z ) and 𝐋 ν ( z ) are obtainable via (11.2.5) and (11.2.6). Other integrals that appear in §11.5(i) have highly oscillatory integrands unless z is small. … Sequences of values of 𝐇 ν ( z ) and 𝐋 ν ( z ) , with z fixed, can be computed by application of the inhomogeneous difference equations (11.4.23) and (11.4.25). …
    36: 2.8 Differential Equations with a Parameter
    Solutions are Bessel functions, or modified Bessel functions, of order ± ( 1 + 4 ρ ) 1 / 2 (§§10.2, 10.25). … For I ν and K ν see §10.25(ii). … Define … For other examples of uniform asymptotic approximations and expansions of special functions in terms of Bessel functions or modified Bessel functions of fixed order see §§13.8(iii), 13.21(i), 13.21(iv), 14.15(i), 14.15(iii), 14.20(vii), 15.12(iii), 18.15(i), 18.15(iv), 18.24, 33.20(iv). … For further examples of uniform asymptotic approximations in terms of Bessel functions or modified Bessel functions of variable order see §§13.21(ii), 14.15(ii), 14.15(iv), 14.20(viii), 30.9(i), 30.9(ii). …
    37: Bibliography S
  • J. Segura, P. Fernández de Córdoba, and Yu. L. Ratis (1997) A code to evaluate modified Bessel functions based on the continued fraction method. Comput. Phys. Comm. 105 (2-3), pp. 263–272.
  • J. Segura (2011) Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374 (2), pp. 516–528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • S. L. Skorokhodov (1985) On the calculation of complex zeros of the modified Bessel function of the second kind. Dokl. Akad. Nauk SSSR 280 (2), pp. 296–299.
  • 38: 10.60 Sums
    §10.60 Sums
    §10.60(i) Addition Theorems
    §10.60(ii) Duplication Formulas
    For further sums of series of spherical Bessel functions, or modified spherical Bessel functions, see §6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thompson (1984), Harris (2000), and Rottbrand (2000).
    §10.60(iv) Compendia
    39: Bibliography B
  • C. B. Balogh (1967) Asymptotic expansions of the modified Bessel function of the third kind of imaginary order. SIAM J. Appl. Math. 15, pp. 1315–1323.
  • Á. Baricz and T. K. Pogány (2013) Integral representations and summations of the modified Struve function. Acta Math. Hungar. 141 (3), pp. 254–281.
  • V. Bezvoda, R. Farzan, K. Segeth, and G. Takó (1986) On numerical evaluation of integrals involving Bessel functions. Apl. Mat. 31 (5), pp. 396–410.
  • Yu. A. Brychkov and K. O. Geddes (2005) On the derivatives of the Bessel and Struve functions with respect to the order. Integral Transforms Spec. Funct. 16 (3), pp. 187–198.
  • K. H. Burrell (1974) Algorithm 484: Evaluation of the modified Bessel functions K0(Z) and K1(Z) for complex arguments. Comm. ACM 17 (9), pp. 524–526.
  • 40: Bibliography R
  • Ju. M. Rappoport (1979) Tablitsy modifitsirovannykh funktsii Besselya K 1 2 + i β ( x ) . “Nauka”, Moscow (Russian).
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • F. E. Relton (1965) Applied Bessel Functions. Dover Publications Inc., New York.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.