About the Project

integrable systems

AdvancedHelp

(0.001 seconds)

21—30 of 32 matching pages

21: 28.34 Methods of Computation
  • (a)

    Direct numerical integration of the differential equation (28.2.1), with initial values given by (28.2.5) (§§3.7(ii), 3.7(v)).

  • (d)

    Solution of the systems of linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4), with the conditions (28.4.9)–(28.4.12) and (28.14.5), by boundary-value methods (§3.6) to determine the Fourier coefficients. Subsequently, the Fourier series can be summed with the aid of Clenshaw’s algorithm (§3.11(ii)). See Meixner and Schäfke (1954, §2.87). This procedure can be combined with §28.34(ii)(d).

  • (b)

    Direct numerical integration3.7) of the differential equation (28.20.1) for moderate values of the parameters.

  • 22: Bibliography D
  • P. J. Davis and P. Rabinowitz (1984) Methods of Numerical Integration. 2nd edition, Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL.
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • B. Deconinck and H. Segur (1998) The KP equation with quasiperiodic initial data. Phys. D 123 (1-4), pp. 123–152.
  • Derive (commercial interactive system) Texas Instruments, Inc..
  • R. L. Devaney (1986) An Introduction to Chaotic Dynamical Systems. The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA.
  • 23: 18.40 Methods of Computation
    See accompanying text
    Figure 18.40.1: Histogram approximations to the Repulsive Coulomb–Pollaczek, RCP, weight function integrated over [ 1 , x ) , see Figure 18.39.2 for an exact result, for Z = + 1 , shown for N = 12 and N = 120 . Magnify
    Results similar to these appear in Langhoff et al. (1976) in methods developed for physics applications, and which includes treatments of systems with discontinuities in μ ( x ) , using what is referred to as the Stieltjes derivative which may be traced back to Stieltjes, as discussed by Deltour (1968, Eq. 12). … Further, exponential convergence in N , via the Derivative Rule, rather than the power-law convergence of the histogram methods, is found for the inversion of Gegenbauer, Attractive, as well as Repulsive, Coulomb–Pollaczek, and Hermite weights and zeros to approximate w ( x ) for these OP systems on x [ 1 , 1 ] and ( , ) respectively, Reinhardt (2018), and Reinhardt (2021b), Reinhardt (2021a). …
    24: 18.34 Bessel Polynomials
    Hence the full system of polynomials y n ( x ; a ) cannot be orthogonal on the line with respect to a positive weight function, but this is possible for a finite system of such polynomials, the Romanovski–Bessel polynomials, if a < 1 : …The full system satisfies orthogonality with respect to a (not positive definite) moment functional; see Evans et al. (1993, (2.7)) for the simple expression of the moments μ n . … Orthogonality of the full system on the unit circle can be given with a much simpler weight function: …the integration path being taken in the positive rotational sense. … In this limit the finite system of Jacobi polynomials P n ( α , β ) ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of Romanovski–Bessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). …
    25: 18.2 General Orthogonal Polynomials
    Here w ( x ) is continuous or piecewise continuous or integrable such that … whereas in the latter case the system { p n ( x ) } is finite: n = 0 , 1 , , N . … Between the systems { p n ( x ) } and { q n ( x ) } there are the contiguous relations … A system of OP’s with unique orthogonality measure is always complete, see Shohat and Tamarkin (1970, Theorem 2.14). In particular, a system of OP’s on a bounded interval is always complete. …
    26: Bibliography R
  • REDUCE (free interactive system)
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • S. O. Rice (1954) Diffraction of plane radio waves by a parabolic cylinder. Calculation of shadows behind hills. Bell System Tech. J. 33, pp. 417–504.
  • H. Rosengren (2004) Elliptic hypergeometric series on root systems. Adv. Math. 181 (2), pp. 417–447.
  • 27: Bibliography K
  • R. Koekoek and R. F. Swarttouw (1998) The Askey-scheme of hypergeometric orthogonal polynomials and its q -analogue. Technical report Technical Report 98-17, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics.
  • D. A. Kofke (2004) Comment on “The incomplete beta function law for parallel tempering sampling of classical canonical systems” [J. Chem. Phys. 120, 4119 (2004)]. J. Chem. Phys. 121 (2), pp. 1167.
  • T. H. Koornwinder (1992) Askey-Wilson Polynomials for Root Systems of Type B C . In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, pp. 189–204.
  • C. Kormanyos (2011) Algorithm 910: a portable C++ multiple-precision system for special-function calculations. ACM Trans. Math. Software 37 (4), pp. Art. 45, 27.
  • M. D. Kruskal and P. A. Clarkson (1992) The Painlevé-Kowalevski and poly-Painlevé tests for integrability. Stud. Appl. Math. 86 (2), pp. 87–165.
  • 28: Bibliography M
  • I. G. Macdonald (1972) Affine root systems and Dedekind’s η -function. Invent. Math. 15 (2), pp. 91–143.
  • I. G. Macdonald (1982) Some conjectures for root systems. SIAM J. Math. Anal. 13 (6), pp. 988–1007.
  • I. G. Macdonald (2000) Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, pp. Art. B45a, 40 pp. (electronic).
  • Maxima (free interactive system)
  • MuPAD (commercial interactive system and Matlab toolbox) SciFace Software, Paderborn, Germany.
  • 29: 3.7 Ordinary Differential Equations
    Assume that we wish to integrate (3.7.1) along a finite path 𝒫 from z = a to z = b in a domain D . … If, for example, β 0 = β 1 = 0 , then on moving the contributions of w ( z 0 ) and w ( z P ) to the right-hand side of (3.7.13) the resulting system of equations is not tridiagonal, but can readily be made tridiagonal by annihilating the elements of 𝐀 P that lie below the main diagonal and its two adjacent diagonals. … The Sturm–Liouville eigenvalue problem is the construction of a nontrivial solution of the systemThe larger the absolute values of the eigenvalues λ k that are being sought, the smaller the integration steps | τ j | need to be. …
    30: 18.3 Definitions
  • 2.

    With the property that { p n + 1 ( x ) } n = 0 is again a system of OP’s. See §18.9(iii).

  • Table 18.3.1: Orthogonality properties for classical OP’s: intervals, weight functions, standardizations, leading coefficients, and parameter constraints. …
    Name p n ( x ) ( a , b ) w ( x ) h n k n k ~ n / k n Constraints
    For 1 β > α > 1 a finite system of Jacobi polynomials P n ( α , β ) ( x ) is orthogonal on ( 1 , ) with weight function w ( x ) = ( x 1 ) α ( x + 1 ) β . For ν and N > 1 2 a finite system of Jacobi polynomials P n ( N 1 + i ν , N 1 i ν ) ( i x ) (called pseudo Jacobi polynomials or Routh–Romanovski polynomials) is orthogonal on ( , ) with w ( x ) = ( 1 + x 2 ) N 1 e 2 ν arctan x . … However, in general they are not orthogonal with respect to a positive measure, but a finite system has such an orthogonality. …