About the Project

infinite sequences

AdvancedHelp

(0.002 seconds)

11—18 of 18 matching pages

11: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
A (finite or countably infinite, generalizing the definition of (1.2.40)) set { v n } is an orthonormal set if the v n are normalized and pairwise orthogonal. … An inner product space V is called a Hilbert space if every Cauchy sequence { v n } in V (i. … A Hilbert space V is separable if there is an (at most countably infinite) orthonormal set { v n } in V such that for every v V …where the infinite sum means convergence in norm, … Let X = ( a , b ) be a finite or infinite open interval in . …
12: 18.33 Polynomials Orthogonal on the Unit Circle
This states that for any sequence { α n } n = 0 with α n and | α n | < 1 the polynomials Φ n ( z ) generated by the recurrence relations (18.33.23), (18.33.24) with Φ 0 ( z ) = 1 satisfy the orthogonality relation (18.33.17) for a unique probability measure μ with infinite support on the unit circle. …
13: 25.11 Hurwitz Zeta Function
25.11.8 ζ ( s , 1 2 a ) = ζ ( s , 1 2 a + 1 2 ) + 2 s n = 0 ( 1 ) n ( n + a ) s , s > 0 , s 1 , 0 < a 1 .
25.11.35 n = 0 ( 1 ) n ( n + a ) s = 1 Γ ( s ) 0 x s 1 e a x 1 + e x d x = 2 s ( ζ ( s , 1 2 a ) ζ ( s , 1 2 ( 1 + a ) ) ) , a > 0 , s > 0 ; or a = 0 , a 0 , 0 < s < 1 .
25.11.38 k = 1 ( n + k k ) ζ ( n + k + 1 , a ) z k = ( 1 ) n n ! ( ψ ( n ) ( a ) ψ ( n ) ( a z ) ) , n = 1 , 2 , 3 , , a > 0 , | z | < | a | .
25.11.39 k = 2 k 2 k ζ ( k + 1 , 3 4 ) = 8 G ,
25.11.40 G n = 0 ( 1 ) n ( 2 n + 1 ) 2 = 0.91596 55941 772 .
14: Bibliography S
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • D. Shanks (1955) Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, pp. 1–42.
  • A. Sidi (1997) Computation of infinite integrals involving Bessel functions of arbitrary order by the D ¯ -transformation. J. Comput. Appl. Math. 78 (1), pp. 125–130.
  • N. J. A. Sloane (2003) The On-Line Encyclopedia of Integer Sequences. Notices Amer. Math. Soc. 50 (8), pp. 912–915.
  • 15: 5.17 Barnes’ G -Function (Double Gamma Function)
    5.17.2 G ( n ) = ( n 2 ) ! ( n 3 ) ! 1 ! , n = 2 , 3 , .
    5.17.6 A = e C = 1.28242 71291 00622 63687 ,
    16: Bibliography R
  • J. T. Ratnanather, J. H. Kim, S. Zhang, A. M. J. Davis, and S. K. Lucas (2014) Algorithm 935: IIPBF, a MATLAB toolbox for infinite integral of products of two Bessel functions. ACM Trans. Math. Softw. 40 (2), pp. 14:1–14:12.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • RISC Combinatorics Group (website) Research Institute for Symbolic Computation, Hagenberg im Mühlkreis, Austria.
  • M. Rothman (1954b) The problem of an infinite plate under an inclined loading, with tables of the integrals of Ai ( ± x ) and Bi ( ± x ) . Quart. J. Mech. Appl. Math. 7 (1), pp. 1–7.
  • R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge.
  • 17: 3.8 Nonlinear Equations
    Let z 1 , z 2 , be a sequence of approximations to a root, or fixed point, ζ . …for all n sufficiently large, where A and p are independent of n , then the sequence is said to have convergence of the p th order. … For real functions f ( x ) the sequence of approximations to a real zero ξ will always converge (and converge quadratically) if either: … Starting this iteration in the neighborhood of one of the four zeros ± 1 , ± i , sequences { z n } are generated that converge to these zeros. For an arbitrary starting point z 0 , convergence cannot be predicted, and the boundary of the set of points z 0 that generate a sequence converging to a particular zero has a very complicated structure. …
    18: Bibliography L
  • H. Levine and J. Schwinger (1948) On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74 (8), pp. 958–974.
  • I. M. Longman (1956) Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Philos. Soc. 52 (4), pp. 764–768.
  • L. Lorch and M. E. Muldoon (2008) Monotonic sequences related to zeros of Bessel functions. Numer. Algorithms 49 (1-4), pp. 221–233.
  • S. K. Lucas and H. A. Stone (1995) Evaluating infinite integrals involving Bessel functions of arbitrary order. J. Comput. Appl. Math. 64 (3), pp. 217–231.
  • J. N. Lyness (1985) Integrating some infinite oscillating tails. J. Comput. Appl. Math. 12/13, pp. 109–117.