About the Project

infinite product

AdvancedHelp

(0.002 seconds)

31—40 of 49 matching pages

31: 25.10 Zeros
The product representation (25.2.11) implies ζ ( s ) 0 for s > 1 . …In the region 0 < s < 1 , called the critical strip, ζ ( s ) has infinitely many zeros, distributed symmetrically about the real axis and about the critical line s = 1 2 . … Because Z ( t ) changes sign infinitely often, ζ ( 1 2 + i t ) has infinitely many zeros with t real. …
32: 27.2 Functions
Functions in this section derive their properties from the fundamental theorem of arithmetic, which states that every integer n > 1 can be represented uniquely as a product of prime powers,
27.2.1 n = r = 1 ν ( n ) p r a r ,
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. … It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …
33: Bibliography D
  • K. Dilcher (1996) Sums of products of Bernoulli numbers. J. Number Theory 60 (1), pp. 23–41.
  • A. L. Dixon and W. L. Ferrar (1930) Infinite integrals in the theory of Bessel functions. Quart. J. Math., Oxford Ser. 1 (1), pp. 122–145.
  • R. McD. Dodds and G. Wiechers (1972) Vector coupling coefficients as products of prime factors. Comput. Phys. Comm. 4 (2), pp. 268–274.
  • L. Durand (1975) Nicholson-type Integrals for Products of Gegenbauer Functions and Related Topics. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 353–374. Math. Res. Center, Univ. Wisconsin, Publ. No. 35.
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 34: 23.20 Mathematical Applications
    K always has the form T × r (Mordell’s Theorem: Silverman and Tate (1992, Chapter 3, §5)); the determination of r , the rank of K , raises questions of great difficulty, many of which are still open. … T must have one of the forms / ( n ) , 1 n 10 or n = 12 , or ( / ( 2 ) ) × ( / ( 2 n ) ) , 1 n 4 . …If any of 2 P , 4 P , 8 P is not an integer, then the point has infinite order. …If none of these equalities hold, then P has infinite order. …
    35: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • M. Ikonomou, P. Köhler, and A. F. Jacob (1995) Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines. Z. Angew. Math. Mech. 75 (12), pp. 917–926.
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • 36: Bibliography
  • T. Agoh and K. Dilcher (2011) Integrals of products of Bernoulli polynomials. J. Math. Anal. Appl. 381 (1), pp. 10–16.
  • J. R. Albright (1977) Integrals of products of Airy functions. J. Phys. A 10 (4), pp. 485–490.
  • W. R. Alford, A. Granville, and C. Pomerance (1994) There are infinitely many Carmichael numbers. Ann. of Math. (2) 139 (3), pp. 703–722.
  • A. Apelblat (1983) Table of Definite and Infinite Integrals. Physical Sciences Data, Vol. 13, Elsevier Scientific Publishing Co., Amsterdam.
  • R. Askey, T. H. Koornwinder, and M. Rahman (1986) An integral of products of ultraspherical functions and a q -extension. J. London Math. Soc. (2) 33 (1), pp. 133–148.
  • 37: 3.8 Nonlinear Equations
    For the computation of zeros of Bessel functions, Coulomb functions, and conical functions as eigenvalues of finite parts of infinite tridiagonal matrices, see Grad and Zakrajšek (1973), Ikebe (1975), Ikebe et al. (1991), Ball (2000), and Gil et al. (2007a, pp. 205–213). … After a zero ζ has been computed, the factor z ζ is factored out of p ( z ) as a by-product of Horner’s scheme (§1.11(i)) for the computation of p ( ζ ) . …
    38: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • 39: 1.2 Elementary Algebra
    §1.2(iii) Partial Fractions
    §1.2(v) Matrices, Vectors, Scalar Products, and Norms
    The transpose of the product is … Column vectors 𝐮 and 𝐯 of the same length n have a scalar productThe scalar product has properties …
    40: Bibliography C
  • J. Chen (1966) On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao (Foreign Lang. Ed.) 17, pp. 385–386.
  • J. A. Cochran (1964) Remarks on the zeros of cross-product Bessel functions. J. Soc. Indust. Appl. Math. 12 (3), pp. 580–587.
  • J. A. Cochran (1966a) The analyticity of cross-product Bessel function zeros. Proc. Cambridge Philos. Soc. 62, pp. 215–226.
  • J. A. Cochran (1966b) The asymptotic nature of zeros of cross-product Bessel functions. Quart. J. Mech. Appl. Math. 19 (4), pp. 511–522.
  • W. C. Connett, C. Markett, and A. L. Schwartz (1993) Product formulas and convolutions for angular and radial spheroidal wave functions. Trans. Amer. Math. Soc. 338 (2), pp. 695–710.