About the Project

infinite

AdvancedHelp

(0.000 seconds)

31—40 of 113 matching pages

31: 9.16 Physical Applications
An application of the Scorer functions is to the problem of the uniform loading of infinite plates (Rothman (1954b, a)).
32: 23.8 Trigonometric Series and Products
§23.8(iii) Infinite Products
33: 25.6 Integer Arguments
25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
25.6.10 ζ ( 4 ) = 36 17 k = 1 1 k 4 ( 2 k k ) .
25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
34: 25.13 Periodic Zeta Function
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
35: 28.29 Definitions and Basic Properties
Q ( z ) is either a continuous and real-valued function for z or an analytic function of z in a doubly-infinite open strip that contains the real axis. … For a given ν , the characteristic equation ( λ ) 2 cos ( π ν ) = 0 has infinitely many roots λ . …For this purpose the discriminant can be expressed as an infinite determinant involving the Fourier coefficients of Q ( x ) ; see Magnus and Winkler (1966, §2.3, pp. 28–36). To every equation (28.29.1), there belong two increasing infinite sequences of real eigenvalues: …
36: 28.34 Methods of Computation
  • (d)

    Solution of the matrix eigenvalue problem for each of the five infinite matrices that correspond to the linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4). See Zhang and Jin (1996, pp. 479–482) and §3.2(iv).

  • 37: Bibliography V
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • 38: 25.12 Polylogarithms
    25.12.7 Li 2 ( e i θ ) = n = 1 cos ( n θ ) n 2 + i n = 1 sin ( n θ ) n 2 .
    25.12.8 n = 1 cos ( n θ ) n 2 = π 2 6 π θ 2 + θ 2 4 .
    25.12.9 n = 1 sin ( n θ ) n 2 = 0 θ ln ( 2 sin ( 1 2 x ) ) d x .
    25.12.10 Li s ( z ) = n = 1 z n n s .
    25.12.12 Li s ( z ) = Γ ( 1 s ) ( ln 1 z ) s 1 + n = 0 ζ ( s n ) ( ln z ) n n ! , s 1 , 2 , 3 , , | ln z | < 2 π ,
    39: 10.74 Methods of Computation
    For infinite integrals involving products of Bessel functions of the first kind, see Linz and Kropp (1973), Gabutti (1980), Ikonomou et al. (1995), Lucas (1995), and Van Deun and Cools (2008). For infinite integrals involving products of Bessel functions of the first and second kinds, see Ratnanather et al. (2014). …
    40: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.