About the Project

in terms of Airy functions

AdvancedHelp

(0.011 seconds)

21—30 of 52 matching pages

21: 9.8 Modulus and Phase
§9.8(i) Definitions
(These definitions of θ ( x ) and ϕ ( x ) differ from Abramowitz and Stegun (1964, Chapter 10), and agree more closely with those used in Miller (1946) and Olver (1997b, Chapter 11).) …
§9.8(ii) Identities
§9.8(iii) Monotonicity
22: 18.24 Hahn Class: Asymptotic Approximations
In particular, asymptotic formulas in terms of elementary functions are given when z = x is real and fixed. … This expansion is in terms of the parabolic cylinder function and its derivative. … This expansion is in terms of confluent hypergeometric functions. … Both expansions are in terms of parabolic cylinder functions. …
Approximations in Terms of Laguerre Polynomials
23: 9.7 Asymptotic Expansions
§9.7 Asymptotic Expansions
§9.7(iii) Error Bounds for Real Variables
In (9.7.9)–(9.7.12) the n th error term in each infinite series is bounded in magnitude by the first neglected term and has the same sign, provided that the following term in the series is of opposite sign. … The n th error term in (9.7.5) and (9.7.6) is bounded in magnitude by the first neglected term multiplied by …
24: 16.18 Special Cases
§16.18 Special Cases
The F 1 1 and F 1 2 functions introduced in Chapters 13 and 15, as well as the more general F q p functions introduced in the present chapter, are all special cases of the Meijer G -function. …As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. Representations of special functions in terms of the Meijer G -function are given in Erdélyi et al. (1953a, §5.6), Luke (1969a, §§6.4–6.5), and Mathai (1993, §3.10).
25: Bibliography L
  • L.-W. Li, T. S. Yeo, P. S. Kooi, and M. S. Leong (1998b) Microwave specific attenuation by oblate spheroidal raindrops: An exact analysis of TCS’s in terms of spheroidal wave functions. J. Electromagn. Waves Appl. 12 (6), pp. 709–711.
  • J. L. López and N. M. Temme (1999c) Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions. Stud. Appl. Math. 103 (3), pp. 241–258.
  • L. Lorch (1990) Monotonicity in terms of order of the zeros of the derivatives of Bessel functions. Proc. Amer. Math. Soc. 108 (2), pp. 387–389.
  • T. A. Lowdon (1970) Integral representation of the Hankel function in terms of parabolic cylinder functions. Quart. J. Mech. Appl. Math. 23 (3), pp. 315–327.
  • D. W. Lozier and F. W. J. Olver (1993) Airy and Bessel Functions by Parallel Integration of ODEs. In Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed (Eds.), Philadelphia, PA, pp. 530–538.
  • 26: 9.12 Scorer Functions
    9.12.17 Hi ( z ) = 3 2 / 3 π k = 0 Γ ( k + 1 3 ) ( 3 1 / 3 z ) k k ! ,
    9.12.30 0 z Gi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π 1 π k = 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 1 3 π δ .
    9.12.31 0 z Hi ( t ) d t 1 π ln z + 2 γ + ln 3 3 π + 1 π k = 1 ( 1 ) k 1 ( 3 k 1 ) ! k ! ( 3 z 3 ) k , | ph z | 2 3 π δ ,
    27: Bibliography M
  • P. Martín, R. Pérez, and A. L. Guerrero (1992) Two-point quasi-fractional approximations to the Airy function Ai ( x ) . J. Comput. Phys. 99 (2), pp. 337–340.
  • 28: 36.12 Uniform Approximation of Integrals
    In consequence, … This technique can be applied to generate a hierarchy of approximations for the diffraction catastrophes Ψ K ( 𝐱 ; k ) in (36.2.10) away from 𝐱 = 𝟎 , in terms of canonical integrals Ψ J ( ξ ( 𝐱 ; k ) ) for J < K . For example, the diffraction catastrophe Ψ 2 ( x , y ; k ) defined by (36.2.10), and corresponding to the Pearcey integral (36.2.14), can be approximated by the Airy function Ψ 1 ( ξ ( x , y ; k ) ) when k is large, provided that x and y are not small. … For Ai and Ai see §9.2. …The coefficients of Ai and Ai are real if y is real and g is real analytic. …
    29: 36.5 Stokes Sets
    K = 1 . Airy Function
    For z 0 , the Stokes set is expressed in terms of scaled coordinates …in which … in which … The distribution of real and complex critical points in Figures 36.5.5 and 36.5.6 follows from consistency with Figure 36.5.1 and the fact that there are four real saddles in the inner regions. …
    30: 36.9 Integral Identities
    §36.9 Integral Identities
    36.9.2 ( Ai ( x ) ) 2 = 2 2 / 3 π 0 Ai ( 2 2 / 3 ( u 2 + x ) ) d u .
    36.9.8 | Ψ ( H ) ( x , y , z ) | 2 = 8 π 2 ( 2 9 ) 1 / 3 Ai ( ( 4 3 ) 1 / 3 ( x + z v + 3 u 2 ) ) Ai ( ( 4 3 ) 1 / 3 ( y + z u + 3 v 2 ) ) d u d v .
    36.9.9 | Ψ ( E ) ( x , y , z ) | 2 = 8 π 2 3 2 / 3 0 0 2 π ( Ai ( 1 3 1 / 3 ( x + i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) Bi ( 1 3 1 / 3 ( x i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) ) u d u d θ .
    This reference also provides a physical interpretation in terms of Lagrangian manifolds and Wigner functions in phase space. …