About the Project

generalized Mehler?Fock transformation

AdvancedHelp

(0.012 seconds)

1—10 of 478 matching pages

1: 1.14 Integral Transforms
§1.14 Integral Transforms
§1.14(i) Fourier Transform
§1.14(iii) Laplace Transform
Fourier Transform
Laplace Transform
2: 8.19 Generalized Exponential Integral
§8.19 Generalized Exponential Integral
§8.19(ii) Graphics
§8.19(ix) Inequalities
§8.19(x) Integrals
§8.19(xi) Further Generalizations
3: 16.2 Definition and Analytic Properties
§16.2(i) Generalized Hypergeometric Series
Polynomials
Note also that any partial sum of the generalized hypergeometric series can be represented as a generalized hypergeometric function via …
§16.2(v) Behavior with Respect to Parameters
4: 1.16 Distributions
Λ : 𝒟 ( I ) is called a distribution, or generalized function, if it is a continuous linear functional on 𝒟 ( I ) , that is, it is a linear functional and for every ϕ n ϕ in 𝒟 ( I ) , … More generally, if α ( x ) is an infinitely differentiable function, then …
§1.16(vii) Fourier Transforms of Tempered Distributions
Then its Fourier transform is …
§1.16(viii) Fourier Transforms of Special Distributions
5: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
§8.21(i) Definitions: General Values
§8.21(iv) Interrelations
§8.21(v) Special Values
6: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
Kummer Transformation
Thomae Transformation
§35.8(iv) General Properties
Laplace Transform
7: 19.2 Definitions
§19.2(i) General Elliptic Integrals
§19.2(iii) Bulirsch’s Integrals
Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). …
8: 16.24 Physical Applications
§16.24 Physical Applications
§16.24(i) Random Walks
Generalized hypergeometric functions and Appell functions appear in the evaluation of the so-called Watson integrals which characterize the simplest possible lattice walks. …
§16.24(iii) 3 j , 6 j , and 9 j Symbols
The coefficients of transformations between different coupling schemes of three angular momenta are related to the Wigner 6 j symbols. …
9: 16.6 Transformations of Variable
§16.6 Transformations of Variable
Quadratic
Cubic
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
10: 15.17 Mathematical Applications
The logarithmic derivatives of some hypergeometric functions for which quadratic transformations exist (§15.8(iii)) are solutions of Painlevé equations. … Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform1.14(ii)) or as a specialization of a group Fourier transform. … Quadratic transformations give insight into the relation of elliptic integrals to the arithmetic-geometric mean (§19.22(ii)). … By considering, as a group, all analytic transformations of a basis of solutions under analytic continuation around all paths on the Riemann sheet, we obtain the monodromy group. …