About the Project

first

AdvancedHelp

(0.001 seconds)

31—40 of 417 matching pages

31: 14.22 Graphics
See accompanying text
Figure 14.22.1: P 1 / 2 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.2: P 1 / 2 1 / 2 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.3: P 1 / 2 1 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
32: 29.16 Asymptotic Expansions
The approximations for Lamé polynomials hold uniformly on the rectangle 0 z K , 0 z K , when n k and n k assume large real values. …
33: 22.5 Special Values
Table 22.5.1 gives the value of each of the 12 Jacobian elliptic functions, together with its z -derivative (or at a pole, the residue), for values of z that are integer multiples of K , i K . For example, at z = K + i K , sn ( z , k ) = 1 / k , d sn ( z , k ) / d z = 0 . … If k 0 + , then K π / 2 and K ; if k 1 , then K and K π / 2 . … Expansions for K , K as k 0 or 1 are given in §§19.5, 19.12. For values of K , K when k 2 = 1 2 (lemniscatic case) see §23.5(iii), and for k 2 = e i π / 3 (equianharmonic case) see §23.5(v). …
34: 10.45 Functions of Imaginary Order
and I ~ ν ( x ) , K ~ ν ( x ) are real and linearly independent solutions of (10.45.1): … In consequence of (10.45.5)–(10.45.7), I ~ ν ( x ) and K ~ ν ( x ) comprise a numerically satisfactory pair of solutions of (10.45.1) when x is large, and either I ~ ν ( x ) and ( 1 / π ) sinh ( π ν ) K ~ ν ( x ) , or I ~ ν ( x ) and K ~ ν ( x ) , comprise a numerically satisfactory pair when x is small, depending whether ν 0 or ν = 0 . … For graphs of I ~ ν ( x ) and K ~ ν ( x ) see §10.26(iii). For properties of I ~ ν ( x ) and K ~ ν ( x ) , including uniform asymptotic expansions for large ν and zeros, see Dunster (1990a). In this reference I ~ ν ( x ) is denoted by ( 1 / π ) sinh ( π ν ) L i ν ( x ) . …
35: 10.31 Power Series
For I ν ( z ) see (10.25.2) and (10.27.1). …
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
36: 22.1 Special Notation
x , y real variables.
K , K K ( k ) , K ( k ) = K ( k ) (complete elliptic integrals of the first kind (§19.2(ii))).
τ i K / K .
37: 19.7 Connection Formulas
§19.7(i) Complete Integrals of the First and Second Kinds
K ( 1 / k ) = k ( K ( k ) i K ( k ) ) ,
K ( 1 / k ) = k ( K ( k ) ± i K ( k ) ) ,
The first of the three relations maps each circular region onto itself and each hyperbolic region onto the other; in particular, it gives the Cauchy principal value of Π ( ϕ , α 2 , k ) when α 2 > csc 2 ϕ (see (19.6.5) for the complete case). …
38: 14.28 Sums
14.28.1 P ν ( z 1 z 2 ( z 1 2 1 ) 1 / 2 ( z 2 2 1 ) 1 / 2 cos ϕ ) = P ν ( z 1 ) P ν ( z 2 ) + 2 m = 1 ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) P ν m ( z 1 ) P ν m ( z 2 ) cos ( m ϕ ) ,
14.28.2 n = 0 ( 2 n + 1 ) Q n ( z 1 ) P n ( z 2 ) = 1 z 1 z 2 , z 1 1 , z 2 2 ,
39: 19.4 Derivatives and Differential Equations
d K ( k ) d k = E ( k ) k 2 K ( k ) k k 2 ,
d ( E ( k ) k 2 K ( k ) ) d k = k K ( k ) ,
d E ( k ) d k = E ( k ) K ( k ) k ,
19.4.3 d 2 E ( k ) d k 2 = 1 k d K ( k ) d k = k 2 K ( k ) E ( k ) k 2 k 2 ,
If ϕ = π / 2 , then these two equations become hypergeometric differential equations (15.10.1) for K ( k ) and E ( k ) . …
40: 10.66 Expansions in Series of Bessel Functions
10.66.1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! .
ber n ( x 2 ) = k = ( 1 ) n + k J n + 2 k ( x ) I 2 k ( x ) ,
bei n ( x 2 ) = k = ( 1 ) n + k J n + 2 k + 1 ( x ) I 2 k + 1 ( x ) .