DLMF
Index
Notations
Search
Help?
Citing
Customize
Annotate
UnAnnotate
About the Project
10
Bessel Functions
Kelvin Functions
10.65
Power Series
10.67
Asymptotic Expansions for Large Argument
§10.66
Expansions in Series of Bessel Functions
ⓘ
Keywords:
Kelvin functions
,
expansions in series of Bessel functions
Notes:
For (
10.66.1
) apply (
10.23.1
) with
𝒞
=
J
and
λ
=
e
3
π
i
/
4
; also (
10.44.1
) with
𝒵
=
I
and
λ
=
e
π
i
/
4
. For (
10.66.2
) apply (
10.23.2
) with
𝒞
=
J
,
ν
=
n
,
u
=
−
x
,
v
=
i
x
, and equate real and imaginary parts.
Permalink:
http://dlmf.nist.gov/10.66
See also:
Annotations for
Ch.10
10.66.1
ber
ν
x
+
i
bei
ν
x
=
∑
k
=
0
∞
e
(
3
ν
+
k
)
π
i
/
4
x
k
J
ν
+
k
(
x
)
2
k
/
2
k
!
=
∑
k
=
0
∞
e
(
3
ν
+
3
k
)
π
i
/
4
x
k
I
ν
+
k
(
x
)
2
k
/
2
k
!
.
ⓘ
Symbols:
J
ν
(
z
)
: Bessel function of the first kind
,
bei
ν
(
x
)
: Kelvin function
,
ber
ν
(
x
)
: Kelvin function
,
π
: the ratio of the circumference of a circle to its diameter
,
e
: base of natural logarithm
,
!
: factorial (as in
n
!
)
,
i
: imaginary unit
,
I
ν
(
z
)
: modified Bessel function of the first kind
,
k
: nonnegative integer
,
x
: real variable
and
ν
: complex parameter
A&S Ref:
9.9.32
Referenced by:
§10.66
Permalink:
http://dlmf.nist.gov/10.66.E1
Encodings:
TeX
,
pMML
,
png
See also:
Annotations for
§10.66
and
Ch.10
10.66.2
ber
n
(
x
2
)
=
∑
k
=
−
∞
∞
(
−
1
)
n
+
k
J
n
+
2
k
(
x
)
I
2
k
(
x
)
,
bei
n
(
x
2
)
=
∑
k
=
−
∞
∞
(
−
1
)
n
+
k
J
n
+
2
k
+
1
(
x
)
I
2
k
+
1
(
x
)
.
ⓘ
Symbols:
J
ν
(
z
)
: Bessel function of the first kind
,
bei
ν
(
x
)
: Kelvin function
,
ber
ν
(
x
)
: Kelvin function
,
I
ν
(
z
)
: modified Bessel function of the first kind
,
n
: integer
,
k
: nonnegative integer
and
x
: real variable
A&S Ref:
9.9.33
Referenced by:
§10.66
Permalink:
http://dlmf.nist.gov/10.66.E2
Encodings:
TeX
,
TeX
,
pMML
,
pMML
,
png
,
png
See also:
Annotations for
§10.66
and
Ch.10