About the Project

exponential%20function

AdvancedHelp

(0.006 seconds)

21—30 of 55 matching pages

21: 26.14 Permutations: Order Notation
§26.14(ii) Generating Functions
26.14.4 n , k = 0 n k x k t n n ! = 1 x exp ( ( x 1 ) t ) x , | x | < 1 , | t | < 1 .
22: 9.7 Asymptotic Expansions
§9.7 Asymptotic Expansions
Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D. …
§9.7(iii) Error Bounds for Real Variables
§9.7(iv) Error Bounds for Complex Variables
23: 15.10 Hypergeometric Differential Equation
Singularity z = 0
Singularity z = 1
Singularity z =
The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
15.10.35 w 2 ( z ) = e ( 1 a ) π i Γ ( 2 c ) Γ ( c b ) Γ ( a c + 1 ) Γ ( c a b + 1 ) w 4 ( z ) + exp e a π i Γ ( 2 c ) Γ ( c b ) Γ ( a b + 1 ) Γ ( 1 a ) w 5 ( z ) ,
24: 36.4 Bifurcation Sets
x = 9 20 z 2 .
x = 3 20 z 2 ,
36.4.11 x + i y = z 2 exp ( 2 3 i π m ) , m = 0 , 1 , 2 .
x = 1 12 z 2 ( exp ( 2 τ ) ± 2 exp ( τ ) ) ,
y = 1 12 z 2 ( exp ( 2 τ ) ± 2 exp ( τ ) ) , τ < .
25: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 26: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G -function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
  • G. Nemes (2015a) Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal. Proc. Roy. Soc. Edinburgh Sect. A 145 (3), pp. 571–596.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 27: 32.8 Rational Solutions
    32.8.3 w ( z ; 3 ) = 3 z 2 z 3 + 4 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 ,
    32.8.4 w ( z ; 4 ) = 1 z + 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 9 z 5 ( z 3 + 40 ) z 9 + 60 z 6 + 11200 .
    32.8.5 w ( z ; n ) = d d z ( ln ( Q n 1 ( z ) Q n ( z ) ) ) ,
    Q 3 ( z ) = z 6 + 20 z 3 80 ,
    32.8.8 m = 0 p m ( z ) λ m = exp ( z λ 4 3 λ 3 ) .
    28: 5.11 Asymptotic Expansions
    and … Wrench (1968) gives exact values of g k up to g 20 . …
    §5.11(ii) Error Bounds and Exponential Improvement
    For re-expansions of the remainder terms in (5.11.1) and (5.11.3) in series of incomplete gamma functions with exponential improvement (§2.11(iii)) in the asymptotic expansions, see Berry (1991), Boyd (1994), and Paris and Kaminski (2001, §6.4). …
    29: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • M. S. Milgram (1985) The generalized integro-exponential function. Math. Comp. 44 (170), pp. 443–458.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 30: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Blanch and Clemm (1969) includes eigenvalues a n ( q ) , b n ( q ) for q = ρ e i ϕ , ρ = 0 ( .5 ) 25 , ϕ = 5 ( 5 ) 90 , n = 0 ( 1 ) 15 ; 4D. Also a n ( q ) and b n ( q ) for q = i ρ , ρ = 0 ( .5 ) 100 , n = 0 ( 2 ) 14 and n = 2 ( 2 ) 16 , respectively; 8D. Double points for n = 0 ( 1 ) 15 ; 8D. Graphs are included.