About the Project

expansions in Chebyshev series

AdvancedHelp

(0.005 seconds)

11—20 of 27 matching pages

11: 19.38 Approximations
Minimax polynomial approximations (§3.11(i)) for K ( k ) and E ( k ) in terms of m = k 2 with 0 m < 1 can be found in Abramowitz and Stegun (1964, §17.3) with maximum absolute errors ranging from 4×10⁻⁵ to 2×10⁻⁸. Approximations of the same type for K ( k ) and E ( k ) for 0 < k 1 are given in Cody (1965a) with maximum absolute errors ranging from 4×10⁻⁵ to 4×10⁻¹⁸. Cody (1965b) gives Chebyshev-series expansions3.11(ii)) with maximum precision 25D. Approximations for Legendre’s complete or incomplete integrals of all three kinds, derived by Padé approximation of the square root in the integrand, are given in Luke (1968, 1970). …The accuracy is controlled by the number of terms retained in the approximation; for real variables the number of significant figures appears to be roughly twice the number of terms retained, perhaps even for ϕ near π / 2 with the improvements made in the 1970 reference. …
12: 18.38 Mathematical Applications
In consequence, expansions of functions that are infinitely differentiable on [ 1 , 1 ] in series of Chebyshev polynomials usually converge extremely rapidly. …
13: 18.40 Methods of Computation
For applications in which the OP’s appear only as terms in series expansions (compare §18.18(i)) the need to compute them can be avoided altogether by use instead of Clenshaw’s algorithm (§3.11(ii)) and its straightforward generalization to OP’s other than Chebyshev. …
14: 8.27 Approximations
  • Luke (1969b, pp. 25, 40–41) gives Chebyshev-series expansions for Γ ( a , ω z ) (by specifying parameters) with 1 ω < , and γ ( a , ω z ) with 0 ω 1 ; see also Temme (1994b, §3).

  • Luke (1975, p. 103) gives Chebyshev-series expansions for E 1 ( x ) and related functions for x 5 .

  • Verbeeck (1970) gives polynomial and rational approximations for E p ( x ) = ( e x / x ) P ( z ) , approximately, where P ( z ) denotes a quotient of polynomials of equal degree in z = x 1 .

  • 15: 13.31 Approximations
    §13.31(i) Chebyshev-Series Expansions
    Luke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M ( a , b , x ) and U ( a , b , x ) that include the intervals 0 x α and α x < , respectively, where α is an arbitrary positive constant. … In Luke (1977a) the following rational approximation is given, together with its rate of convergence. …
    13.31.1 A n ( z ) = s = 0 n ( n ) s ( n + 1 ) s ( a ) s ( b ) s ( a + 1 ) s ( b + 1 ) s ( n ! ) 2 F 3 3 ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
    13.31.3 z a U ( a , 1 + a b , z ) = lim n A n ( z ) B n ( z ) .
    16: Bibliography S
  • J. L. Schonfelder (1978) Chebyshev expansions for the error and related functions. Math. Comp. 32 (144), pp. 1232–1240.
  • J. L. Schonfelder (1980) Very high accuracy Chebyshev expansions for the basic trigonometric functions. Math. Comp. 34 (149), pp. 237–244.
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • H. Shanker (1940a) On integral representation of Weber’s parabolic cylinder function and its expansion into an infinite series. J. Indian Math. Soc. (N. S.) 4, pp. 34–38.
  • 17: 18.3 Definitions
    §18.3 Definitions
    For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …Explicit power series for Chebyshev, Legendre, Laguerre, and Hermite polynomials for n = 0 , 1 , , 6 are given in §18.5(iv). …
    Chebyshev
    In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) : …
    18: Bibliography O
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • F. W. J. Olver (1994b) The Generalized Exponential Integral. In Approximation and Computation (West Lafayette, IN, 1993), R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 497–510.
  • 19: Bibliography R
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • W. Rudin (1973) Functional Analysis. McGraw-Hill Book Co., New York.
  • W. Rudin (1976) Principles of Mathematical Analysis. 3rd edition, McGraw-Hill Book Co., New York.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 20: Bibliography D
  • G. Delic (1979a) Chebyshev expansion of the associated Legendre polynomial P L M ( x ) . Comput. Phys. Comm. 18 (1), pp. 63–71.
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • P. G. L. Dirichlet (1849) Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1849, pp. 69–83 (German).
  • T. M. Dunster, R. B. Paris, and S. Cang (1998) On the high-order coefficients in the uniform asymptotic expansion for the incomplete gamma function. Methods Appl. Anal. 5 (3), pp. 223–247.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.