About the Project

expansions%20in%20partial%20fractions

AdvancedHelp

(0.003 seconds)

21—30 of 938 matching pages

21: Bibliography O
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • 22: 2.11 Remainder Terms; Stokes Phenomenon
    Secondly, the asymptotic series represents an infinite class of functions, and the remainder depends on which member we have in mind. …
    §2.11(iii) Exponentially-Improved Expansions
    For illustration, we give re-expansions of the remainder terms in the expansions (2.7.8) arising in differential-equation theory. … In this way we arrive at hyperasymptotic expansions. … For example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
    23: 36 Integrals with Coalescing Saddles
    24: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • 25: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 26: 5.11 Asymptotic Expansions
    §5.11 Asymptotic Expansions
    §5.11(i) Poincaré-Type Expansions
    Wrench (1968) gives exact values of g k up to g 20 . … For re-expansions of the remainder terms in (5.11.1) and (5.11.3) in series of incomplete gamma functions with exponential improvement (§2.11(iii)) in the asymptotic expansions, see Berry (1991), Boyd (1994), and Paris and Kaminski (2001, §6.4). …
    27: 9.9 Zeros
    They lie in the sectors 1 3 π < ph z < 1 2 π and 1 2 π < ph z < 1 3 π , and are denoted by β k , β k , respectively, in the former sector, and by β k ¯ , β k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. For the distribution in of the zeros of Ai ( z ) σ Ai ( z ) , where σ is an arbitrary complex constant, see Muraveĭ (1976) and Gil and Segura (2014). …
    §9.9(iv) Asymptotic Expansions
    For error bounds for the asymptotic expansions of a k , b k , a k , and b k see Pittaluga and Sacripante (1991), and a conjecture given in Fabijonas and Olver (1999). … Tables 9.9.3 and 9.9.4 give the corresponding results for the first ten complex zeros of Bi and Bi in the upper half plane. …
    28: Peter L. Walker
     1942 in Dorchester, U. …He began his academic career in 1964 at the University of Lancaster, U. … Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. … Walker is now retired and living in Cheltenham, UK. …
  • 29: 12.11 Zeros
    Lastly, when a = n 1 2 , n = 1 , 2 , (Hermite polynomial case) U ( a , x ) has n zeros and they lie in the interval [ 2 a , 2 a ] . …
    §12.11(ii) Asymptotic Expansions of Large Zeros
    Numerical calculations in this case show that z 1 2 , s corresponds to the s th zero on the string; compare §7.13(ii).
    §12.11(iii) Asymptotic Expansions for Large Parameter
    For large negative values of a the real zeros of U ( a , x ) , U ( a , x ) , V ( a , x ) , and V ( a , x ) can be approximated by reversion of the Airy-type asymptotic expansions of §§12.10(vii) and 12.10(viii). …
    30: 24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. …