About the Project

error%20control

AdvancedHelp

(0.002 seconds)

1—10 of 240 matching pages

1: 7.18 Repeated Integrals of the Complementary Error Function
§7.18 Repeated Integrals of the Complementary Error Function
§7.18(i) Definition
§7.18(iii) Properties
Hermite Polynomials
2: 7.2 Definitions
§7.2(i) Error Functions
7.2.2 erfc z = 2 π z e t 2 d t = 1 erf z ,
erf z , erfc z , and w ( z ) are entire functions of z , as is F ( z ) in the next subsection.
Values at Infinity
lim z erf z = 1 ,
3: 7.24 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for erf x , erfc x and the auxiliary functions f ( x ) and g ( x ) .

  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Shepherd and Laframboise (1981) gives coefficients of Chebyshev series for ( 1 + 2 x ) e x 2 erfc x on ( 0 , ) (22D).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 4: 7.23 Tables
  • Zhang and Jin (1996, pp. 637, 639) includes ( 2 / π ) e x 2 , erf x , x = 0 ( .02 ) 1 ( .04 ) 3 , 8D; C ( x ) , S ( x ) , x = 0 ( .2 ) 10 ( 2 ) 100 ( 100 ) 500 , 8D.

  • Abramowitz and Stegun (1964, Chapter 7) includes w ( z ) , x = 0 ( .1 ) 3.9 , y = 0 ( .1 ) 3 , 6D.

  • Zhang and Jin (1996, pp. 638, 640–641) includes the real and imaginary parts of erf z , x [ 0 , 5 ] , y = 0.5 ( .5 ) 3 , 7D and 8D, respectively; the real and imaginary parts of x e ± i t 2 d t , ( 1 / π ) e i ( x 2 + ( π / 4 ) ) x e ± i t 2 d t , x = 0 ( .5 ) 20 ( 1 ) 25 , 8D, together with the corresponding modulus and phase to 8D and 6D (degrees), respectively.

  • Fettis et al. (1973) gives the first 100 zeros of erf z and w ( z ) (the table on page 406 of this reference is for w ( z ) , not for erfc z ), 11S.

  • Zhang and Jin (1996, p. 642) includes the first 10 zeros of erf z , 9D; the first 25 distinct zeros of C ( z ) and S ( z ) , 8S.

  • 5: 19.38 Approximations
    Minimax polynomial approximations (§3.11(i)) for K ( k ) and E ( k ) in terms of m = k 2 with 0 m < 1 can be found in Abramowitz and Stegun (1964, §17.3) with maximum absolute errors ranging from 4×10⁻⁵ to 2×10⁻⁸. Approximations of the same type for K ( k ) and E ( k ) for 0 < k 1 are given in Cody (1965a) with maximum absolute errors ranging from 4×10⁻⁵ to 4×10⁻¹⁸. … The accuracy is controlled by the number of terms retained in the approximation; for real variables the number of significant figures appears to be roughly twice the number of terms retained, perhaps even for ϕ near π / 2 with the improvements made in the 1970 reference. …
    6: 7.15 Sums
    §7.15 Sums
    For sums involving the error function see Hansen (1975, p. 423) and Prudnikov et al. (1986b, vol. 2, pp. 650–651).
    7: 7.8 Inequalities
    §7.8 Inequalities
    7.8.5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 , x 0 .
    7.8.8 erf x < 1 e 4 x 2 / π , x > 0 .
    8: 7.16 Generalized Error Functions
    §7.16 Generalized Error Functions
    Generalizations of the error function and Dawson’s integral are 0 x e t p d t and 0 x e t p d t . …
    9: 7.21 Physical Applications
    §7.21 Physical Applications
    The error functions, Fresnel integrals, and related functions occur in a variety of physical applications. … Carslaw and Jaeger (1959) gives many applications and points out the importance of the repeated integrals of the complementary error function i n erfc ( z ) . Fried and Conte (1961) mentions the role of w ( z ) in the theory of linearized waves or oscillations in a hot plasma; w ( z ) is called the plasma dispersion function or Faddeeva (or Faddeyeva) function; see Faddeeva and Terent’ev (1954). …
    10: 7.22 Methods of Computation
    §7.22(i) Main Functions
    §7.22(iii) Repeated Integrals of the Complementary Error Function
    The recursion scheme given by (7.18.1) and (7.18.7) can be used for computing i n erfc ( x ) . … The computation of these functions can be based on algorithms for the complementary error function with complex argument; compare (7.19.3). …