About the Project

epsilon function

AdvancedHelp

(0.004 seconds)

21—30 of 63 matching pages

21: 31.10 Integral Equations and Representations
31.10.2 ρ ( t ) = t γ 1 ( t 1 ) δ 1 ( t a ) ϵ 1 ,
31.10.13 ρ ( s , t ) = ( s t ) ( s t ) γ 1 ( ( 1 s ) ( 1 t ) ) δ 1 ( ( 1 ( s / a ) ) ( 1 ( t / a ) ) ) ϵ 1 ,
31.10.19 𝒦 ( u , v , w ) = u 1 γ v 1 δ w 1 ϵ 𝒞 1 γ ( u σ 1 ) 𝒞 1 δ ( v σ 2 ) 𝒞 1 ϵ ( i w σ 1 + σ 2 ) ,
22: 28.28 Integrals, Integral Representations, and Integral Equations
28.28.20 2 π 0 π 𝒞 2 ( j ) ( 2 h R ) cos ( 2 ϕ ) ce 2 m ( t , h 2 ) d t = ε ( 1 ) + m A 2 2 m ( h 2 ) Mc 2 m ( j ) ( z , h ) ,
23: 2.5 Mellin Transform Methods
2.5.15 I ( x ) = s = 0 2 n ( a s ln x + b s ) x s + O ( x 2 n 1 + ϵ ) , n = 0 , 1 , 2 , .
2.5.16 I ( x ) = s = 0 n 1 ( c s ln x + d s ) x 2 s 1 + O ( x 2 n 1 + ϵ ) ,
24: 32.10 Special Function Solutions
32.10.4 w ( z ; 1 2 ε ) = ε ϕ ( z ) / ϕ ( z ) ,
32.10.13 w ( z ) = ε 1 ϕ ( z ) / ϕ ( z ) ,
32.10.18 w ( z ) = ε ϕ ( z ) / ϕ ( z ) ,
32.10.19 ϕ ( z ) = ( C 1 U ( a , 2 z ) + C 2 V ( a , 2 z ) ) exp ( 1 2 ε z 2 ) ,
32.10.22 w ( z ) = { 2 exp ( z 2 ) π ( C i erfc ( i z ) ) , ε = 1 , 2 exp ( z 2 ) π ( C erfc ( z ) ) , ε = 1 ,
25: 2.7 Differential Equations
2.7.21 w 1 ( x ) = f 1 / 4 ( x ) exp ( f 1 / 2 ( x ) d x ) ( 1 + ϵ 1 ( x ) ) ,
2.7.22 w 2 ( x ) = f 1 / 4 ( x ) exp ( f 1 / 2 ( x ) d x ) ( 1 + ϵ 2 ( x ) ) ,
such that
2.7.23 | ϵ j ( x ) | , 1 2 f 1 / 2 ( x ) | ϵ j ( x ) | exp ( 1 2 𝒱 a j , x ( F ) ) 1 , j = 1 , 2 ,
26: 13.7 Asymptotic Expansions for Large Argument
13.7.4 U ( a , b , z ) = z a s = 0 n 1 ( a ) s ( a b + 1 ) s s ! ( z ) s + ε n ( z ) ,
13.7.5 | ε n ( z ) | , β 1 | ε n ( z ) | 2 α C n | ( a ) n ( a b + 1 ) n n ! z a + n | exp ( 2 α ρ C 1 | z | ) ,
27: 18.39 Applications in the Physical Sciences
The ϵ n are the observable energies of the system, and an increasing function of n . …
18.39.10 Ψ ( x , t ) = exp ( i ϵ n t / ) ψ n ( x ) ,
18.39.12 Ψ ( x , t ) = n = 0 c n exp ( i ϵ n t / ) ψ n ( x ) ,
With N the functions normalized as δ ( ϵ ϵ ) with measure d r are, formally, …
28: 1.17 Integral and Series Representations of the Dirac Delta
1.17.15 δ ( x a ) = 0 s ( x , ; r ) s ( a , ; r ) d r , a > 0 , x > 0 .
29: 31.3 Basic Solutions
31.3.7 ( 1 z ) 1 δ H ( 1 a , ( ( 1 a ) γ + ϵ ) ( 1 δ ) + α β q ; α + 1 δ , β + 1 δ , 2 δ , γ ; 1 z ) .
31.3.9 ( a z a 1 ) 1 ϵ H ( a a 1 , ( a ( δ + γ ) γ ) ( 1 ϵ ) a 1 + α β a q a 1 ; α + 1 ϵ , β + 1 ϵ , 2 ϵ , δ ; a z a 1 ) .
31.3.10 z α H ( 1 a , q a α ( β ϵ ) α a ( β δ ) ; α , α γ + 1 , α β + 1 , δ ; 1 z ) ,
30: Bibliography N
  • L. N. Nosova and S. A. Tumarkin (1965) Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations ϵ ( p y ) + ( q + ϵ r ) y = f . Pergamon Press, Oxford.