About the Project

complex variables and parameters

AdvancedHelp

(0.010 seconds)

11—20 of 267 matching pages

11: 10.33 Continued Fractions
10.33.1 I ν ( z ) I ν 1 ( z ) = 1 2 ν z 1 + 1 2 ( ν + 1 ) z 1 + 1 2 ( ν + 2 ) z 1 + , z 0 ,
10.33.2 I ν ( z ) I ν 1 ( z ) = 1 2 z / ν 1 + 1 4 z 2 / ( ν ( ν + 1 ) ) 1 + 1 4 z 2 / ( ( ν + 1 ) ( ν + 2 ) ) 1 + , ν 0 , 1 , 2 , .
12: 10.36 Other Differential Equations
10.36.1 z 2 ( z 2 + ν 2 ) w ′′ + z ( z 2 + 3 ν 2 ) w ( ( z 2 + ν 2 ) 2 + z 2 ν 2 ) w = 0 , w = 𝒵 ν ( z ) ,
10.36.2 z 2 w ′′ + z ( 1 ± 2 z ) w + ( ± z ν 2 ) w = 0 , w = e z 𝒵 ν ( z ) .
13: 8.5 Confluent Hypergeometric Representations
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
8.5.5 Γ ( a , z ) = e 1 2 z z 1 2 a 1 2 W 1 2 a 1 2 , 1 2 a ( z ) .
14: 15.7 Continued Fractions
15.7.1 𝐅 ( a , b ; c ; z ) 𝐅 ( a , b + 1 ; c + 1 ; z ) = t 0 u 1 z t 1 u 2 z t 2 u 3 z t 3 ,
15: 8.8 Recurrence Relations and Derivatives
8.8.1 γ ( a + 1 , z ) = a γ ( a , z ) z a e z ,
8.8.2 Γ ( a + 1 , z ) = a Γ ( a , z ) + z a e z .
8.8.3 w ( a + 2 , z ) ( a + 1 + z ) w ( a + 1 , z ) + a z w ( a , z ) = 0 .
8.8.4 z γ ( a + 1 , z ) = γ ( a , z ) e z Γ ( a + 1 ) .
8.8.5 P ( a + 1 , z ) = P ( a , z ) z a e z Γ ( a + 1 ) ,
16: 15.5 Derivatives and Contiguous Functions
15.5.12 ( b a ) F ( a , b ; c ; z ) + a F ( a + 1 , b ; c ; z ) b F ( a , b + 1 ; c ; z ) = 0 ,
17: 15.1 Special Notation
18: 28.11 Expansions in Series of Mathieu Functions
28.11.1 f ( z ) = α 0 ce 0 ( z , q ) + n = 1 ( α n ce n ( z , q ) + β n se n ( z , q ) ) ,
28.11.3 1 = 2 n = 0 A 0 2 n ( q ) ce 2 n ( z , q ) ,
28.11.4 cos 2 m z = n = 0 A 2 m 2 n ( q ) ce 2 n ( z , q ) , m 0 ,
28.11.5 cos ( 2 m + 1 ) z = n = 0 A 2 m + 1 2 n + 1 ( q ) ce 2 n + 1 ( z , q ) ,
28.11.6 sin ( 2 m + 1 ) z = n = 0 B 2 m + 1 2 n + 1 ( q ) se 2 n + 1 ( z , q ) ,
19: 25.14 Lerch’s Transcendent
25.14.1 Φ ( z , s , a ) n = 0 z n ( a + n ) s , | z | < 1 ; s > 1 , | z | = 1 .
25.14.2 ζ ( s , a ) = Φ ( 1 , s , a ) , s > 1 , a 0 , 1 , 2 , ,
25.14.4 Φ ( z , s , a ) = z m Φ ( z , s , a + m ) + n = 0 m 1 z n ( a + n ) s .
25.14.5 Φ ( z , s , a ) = 1 Γ ( s ) 0 x s 1 e a x 1 z e x d x , s > 1 , a > 0 if z = 1 ; s > 0 , a > 0 if z [ 1 , ) .
25.14.6 Φ ( z , s , a ) = 1 2 a s + 0 z x ( a + x ) s d x 2 0 sin ( x ln z s arctan ( x / a ) ) ( a 2 + x 2 ) s / 2 ( e 2 π x 1 ) d x , a > 0 if | z | < 1 ; s > 1 , a > 0 if | z | = 1 .
20: 10.30 Limiting Forms
10.30.1 I ν ( z ) ( 1 2 z ) ν / Γ ( ν + 1 ) , ν 1 , 2 , 3 , ,
10.30.2 K ν ( z ) 1 2 Γ ( ν ) ( 1 2 z ) ν , ν > 0 ,
10.30.5 I ν ( z ) e ± ( ν + 1 2 ) π i e z / 2 π z , 1 2 π + δ ± ph z 3 2 π δ .