About the Project

complementary

AdvancedHelp

(0.000 seconds)

21—30 of 100 matching pages

21: 7.2 Definitions
7.2.2 erfc z = 2 π z e t 2 d t = 1 erf z ,
7.2.3 w ( z ) = e z 2 ( 1 + 2 i π 0 z e t 2 d t ) = e z 2 erfc ( i z ) .
erf z , erfc z , and w ( z ) are entire functions of z , as is F ( z ) in the next subsection. …
lim z erfc z = 0 , | ph z | 1 4 π δ ( < 1 4 π ) .
22: 7.20 Mathematical Applications
For applications of the complementary error function in uniform asymptotic approximations of integrals—saddle point coalescing with a pole or saddle point coalescing with an endpoint—see Wong (1989, Chapter 7), Olver (1997b, Chapter 9), and van der Waerden (1951). The complementary error function also plays a ubiquitous role in constructing exponentially-improved asymptotic expansions and providing a smooth interpretation of the Stokes phenomenon; see §§2.11(iii) and 2.11(iv). …
7.20.1 1 σ 2 π x e ( t m ) 2 / ( 2 σ 2 ) d t = 1 2 erfc ( m x σ 2 ) = Q ( m x σ ) = P ( x m σ ) .
23: 22.14 Integrals
22.14.5 sd ( x , k ) d x = ( k k ) 1 Arcsin ( k cd ( x , k ) ) ,
22.14.6 nd ( x , k ) d x = k 1 Arccos ( cd ( x , k ) ) .
22.14.16 0 K ( k ) ln ( sn ( t , k ) ) d t = π 4 K ( k ) 1 2 K ( k ) ln k ,
22.14.17 0 K ( k ) ln ( cn ( t , k ) ) d t = π 4 K ( k ) + 1 2 K ( k ) ln ( k / k ) ,
24: 12.7 Relations to Other Functions
§12.7(ii) Error Functions, Dawson’s Integral, and Probability Function
12.7.6 U ( n + 1 2 , z ) = D n 1 ( z ) = π 2 ( 1 ) n n ! e 1 4 z 2 d n ( e 1 2 z 2 erfc ( z / 2 ) ) d z n , n = 0 , 1 , 2 , ,
12.7.7 U ( n + 1 2 , z ) = e 1 4 z 2 𝐻ℎ n ( z ) = π  2 1 2 ( n 1 ) e 1 4 z 2 i n erfc ( z / 2 ) , n = 1 , 0 , 1 , .
25: 29.18 Mathematical Applications
0 β 2 K ,
α = K + i K α , 0 α < K ,
β = K + i β , 0 β 2 K , 0 γ 4 K ,
26: 29.13 Graphics
See accompanying text
Figure 29.13.21: | 𝑢𝐸 4 1 ( x + i y , 0.1 ) | for 3 K x 3 K , 0 y 2 K . K = 1.61244 , K = 2.57809 . Magnify 3D Help
See accompanying text
Figure 29.13.22: | 𝑢𝐸 4 1 ( x + i y , 0.5 ) | for 3 K x 3 K , 0 y 2 K . K = K = 1.85407 . Magnify 3D Help
See accompanying text
Figure 29.13.23: | 𝑢𝐸 4 1 ( x + i y , 0.9 ) | for 3 K x 3 K , 0 y 2 K . K = 2.57809 , K = 1.61244 . Magnify 3D Help
27: 6.4 Analytic Continuation
28: 29.12 Definitions
The superscript m on the left-hand sides of (29.12.1)–(29.12.8) agrees with the number of z -zeros of each Lamé polynomial in the interval ( 0 , K ) , while n m is the number of z -zeros in the open line segment from K to K + i K . …
Table 29.12.1: Lamé polynomials.
ν
eigenvalue
h
eigenfunction
w ( z )
polynomial
form
real
period
imag.
period
parity of
w ( z )
parity of
w ( z K )
parity of
w ( z K i K )
2 n a ν 2 m ( k 2 ) 𝑢𝐸 ν m ( z , k 2 ) P ( sn 2 ) 2 K 2 i K even even even
2 n + 1 a ν 2 m + 1 ( k 2 ) 𝑠𝐸 ν m ( z , k 2 ) sn P ( sn 2 ) 4 K 2 i K odd even even
2 n + 1 b ν 2 m + 1 ( k 2 ) 𝑐𝐸 ν m ( z , k 2 ) cn P ( sn 2 ) 4 K 4 i K even odd even
29: 22.13 Derivatives and Differential Equations
22.13.2 ( d d z cn ( z , k ) ) 2 = ( 1 cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) ,
22.13.3 ( d d z dn ( z , k ) ) 2 = ( 1 dn 2 ( z , k ) ) ( dn 2 ( z , k ) k 2 ) .
22.13.5 ( d d z sd ( z , k ) ) 2 = ( 1 k 2 sd 2 ( z , k ) ) ( 1 + k 2 sd 2 ( z , k ) ) ,
22.13.6 ( d d z nd ( z , k ) ) 2 = ( nd 2 ( z , k ) 1 ) ( 1 k 2 nd 2 ( z , k ) ) ,
22.13.8 ( d d z nc ( z , k ) ) 2 = ( k 2 + k 2 nc 2 ( z , k ) ) ( nc 2 ( z , k ) 1 ) ,
30: 6.1 Special Notation
The main functions treated in this chapter are the exponential integrals Ei ( x ) , E 1 ( z ) , and Ein ( z ) ; the logarithmic integral li ( x ) ; the sine integrals Si ( z ) and si ( z ) ; the cosine integrals Ci ( z ) and Cin ( z ) . …