About the Project

combined

AdvancedHelp

(0.001 seconds)

21—30 of 163 matching pages

21: 19.10 Relations to Other Functions
22: 23.17 Elementary Properties
23: 19.26 Addition Theorems
19.26.11 R C ( x + λ , y + λ ) + R C ( x + μ , y + μ ) = R C ( x , y ) ,
19.26.13 R C ( α 2 , α 2 θ ) + R C ( β 2 , β 2 θ ) = R C ( σ 2 , σ 2 θ ) , σ = ( α β + θ ) / ( α + β ) ,
19.26.14 ( p y ) R C ( x , p ) + ( q y ) R C ( x , q ) = ( η ξ ) R C ( ξ , η ) , x 0 , y 0 ; p , q { 0 } ,
19.26.22 R J ( x , y , z , p ) = 2 R J ( x + λ , y + λ , z + λ , p + λ ) + 3 R C ( α 2 , β 2 ) ,
19.26.25 R C ( x , y ) = 2 R C ( x + λ , y + λ ) , λ = y + 2 x y .
24: 13.18 Relations to Other Functions
25: 8.27 Approximations
  • Luke (1975, §4.3) gives Padé approximation methods, combined with a detailed analysis of the error terms, valid for real and complex variables except on the negative real z -axis. See also Temme (1994b, §3).

  • 26: 10.31 Power Series
    27: 10.59 Integrals
    Additional integrals can be obtained by combining the definitions (10.47.3)–(10.47.9) with the results given in §10.22 and §10.43. …
    28: 19.11 Addition Theorems
    19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
    29: 9.10 Integrals
    9.10.1 z Ai ( t ) d t = π ( Ai ( z ) Gi ( z ) Ai ( z ) Gi ( z ) ) ,
    9.10.2 z Ai ( t ) d t = π ( Ai ( z ) Hi ( z ) Ai ( z ) Hi ( z ) ) ,
    9.10.3 z Bi ( t ) d t = 0 z Bi ( t ) d t = π ( Bi ( z ) Gi ( z ) Bi ( z ) Gi ( z ) ) = π ( Bi ( z ) Hi ( z ) Bi ( z ) Hi ( z ) ) .
    9.10.18 Ai ( z ) = 3 z 5 / 4 e ( 2 / 3 ) z 3 / 2 4 π 0 t 3 / 4 e ( 2 / 3 ) t 3 / 2 Ai ( t ) z 3 / 2 + t 3 / 2 d t , | ph z | < 2 3 π .
    9.10.19 Bi ( x ) = 3 x 5 / 4 e ( 2 / 3 ) x 3 / 2 2 π 0 t 3 / 4 e ( 2 / 3 ) t 3 / 2 Ai ( t ) x 3 / 2 t 3 / 2 d t , x > 0 ,
    30: 19.2 Definitions
    Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). …
    19.2.17 R C ( x , y ) = 1 2 0 d t t + x ( t + y ) ,
    19.2.18 R C ( x , y ) = 1 y x arctan y x x = 1 y x arccos x / y , 0 x < y ,
    19.2.19 R C ( x , y ) = 1 x y arctanh x y x = 1 x y ln x + x y y , 0 < y < x .
    19.2.21 R C ( x , y ) = 0 1 ( v 2 x + ( 1 v 2 ) y ) 1 / 2 d v ,