About the Project

change of

AdvancedHelp

(0.001 seconds)

21—30 of 120 matching pages

21: 20.11 Generalizations and Analogs
§20.11(iii) Ramanujan’s Change of Base
These results are called Ramanujan’s changes of base. …
22: 9.6 Relations to Other Functions
9.6.1 ζ = 2 3 z 3 / 2 ,
9.6.10 z = ( 3 2 ζ ) 2 / 3 ,
9.6.11 J ± 1 / 3 ( ζ ) = 1 2 3 / z ( 3 Ai ( z ) Bi ( z ) ) ,
9.6.12 J ± 2 / 3 ( ζ ) = 1 2 ( 3 / z ) ( ± 3 Ai ( z ) + Bi ( z ) ) ,
9.6.13 I ± 1 / 3 ( ζ ) = 1 2 3 / z ( 3 Ai ( z ) + Bi ( z ) ) ,
23: 15.12 Asymptotic Approximations
where
15.12.6 ζ = arccosh z .
15.12.10 ζ = arccosh ( 1 4 z 1 ) ,
15.12.11 β = ( 3 2 ζ + 9 4 ln ( 2 + e ζ 2 + e ζ ) ) 1 / 3 ,
15.12.13 G 0 ( ± β ) = ( 2 + e ± ζ ) c b ( 1 / 2 ) ( 1 + e ± ζ ) a c + ( 1 / 2 ) ( z 1 e ± ζ ) a + ( 1 / 2 ) β e ζ e ζ .
24: 2.5 Mellin Transform Methods
2.5.1 f ( z ) = 0 t z 1 f ( t ) d t ,
2.5.4 I ( z ) = f ( 1 z ) h ( z ) .
2.5.26 f ( z ) = f 1 ( z ) + f 2 ( z )
2.5.28 h ( z ) = h 1 ( z ) + h 2 ( z )
2.5.38 ζ h ( ζ ) = I 1 ( x ) + I 2 ( x ) ,
25: 5.10 Continued Fractions
5.10.1 Ln Γ ( z ) + z ( z 1 2 ) ln z 1 2 ln ( 2 π ) = a 0 z + a 1 z + a 2 z + a 3 z + a 4 z + a 5 z + ,
26: 9.1 Special Notation
Other notations that have been used are as follows: Ai ( x ) and Bi ( x ) for Ai ( x ) and Bi ( x ) (Jeffreys (1928), later changed to Ai ( x ) and Bi ( x ) ); U ( x ) = π Bi ( x ) , V ( x ) = π Ai ( x ) (Fock (1945)); A ( x ) = 3 1 / 3 π Ai ( 3 1 / 3 x ) (Szegő (1967, §1.81)); e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) = π Gi ( x ) (Tumarkin (1959)).
27: 9.5 Integral Representations
9.5.6 Ai ( z ) = 3 2 π 0 exp ( t 3 3 z 3 3 t 3 ) d t , | ph z | < 1 6 π .
9.5.7 Ai ( z ) = e ζ π 0 exp ( z 1 / 2 t 2 ) cos ( 1 3 t 3 ) d t , | ph z | < π .
9.5.8 Ai ( z ) = e ζ ζ 1 / 6 π ( 48 ) 1 / 6 Γ ( 5 6 ) 0 e t t 1 / 6 ( 2 + t ζ ) 1 / 6 d t , | ph z | < 2 3 π .
28: 19.15 Advantages of Symmetry
(19.21.12) unifies the three transformations in §19.7(iii) that change the parameter of Legendre’s third integral. …
29: 1.14 Integral Transforms
1.14.17 ( f ) ( s ) = f ( s ) = 0 e s t f ( t ) d t .
1.14.19 f ( s ) 0 , s .
1.14.21 f ( s a ) = f a ( s ) ,
1.14.22 f a + ( s ) = e a s f ( s ) ,
1.14.46 1 2 π f ( u ) e i u x d u = i ( sign x ) f ( x ) ,
30: 8.18 Asymptotic Expansions of I x ( a , b )
Let
8.18.2 ξ = ln x .
8.18.4 a F k + 1 = ( k + b a ξ ) F k + k ξ F k 1 ,
8.18.6 ( 1 e t t ) b 1 = k = 0 d k ( t ξ ) k .