About the Project

binomial theorem

AdvancedHelp

(0.001 seconds)

11—17 of 17 matching pages

11: 25.2 Definition and Expansions
β–Ί
25.2.8 ΢ ⁑ ( s ) = k = 1 N 1 k s + N 1 s s 1 s ⁒ N x x x s + 1 ⁒ d x , ⁑ s > 0 , N = 1 , 2 , 3 , .
β–Ί
25.2.9 ΢ ⁑ ( s ) = k = 1 N 1 k s + N 1 s s 1 1 2 ⁒ N s + k = 1 n ( s + 2 ⁒ k 2 2 ⁒ k 1 ) ⁒ B 2 ⁒ k 2 ⁒ k ⁒ N 1 s 2 ⁒ k ( s + 2 ⁒ n 2 ⁒ n + 1 ) ⁒ N B ~ 2 ⁒ n + 1 ⁑ ( x ) x s + 2 ⁒ n + 1 ⁒ d x , ⁑ s > 2 ⁒ n ; n , N = 1 , 2 , 3 , .
β–Ί
25.2.10 ΢ ⁑ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 ⁒ k 2 2 ⁒ k 1 ) ⁒ B 2 ⁒ k 2 ⁒ k ( s + 2 ⁒ n 2 ⁒ n + 1 ) ⁒ 1 B ~ 2 ⁒ n + 1 ⁑ ( x ) x s + 2 ⁒ n + 1 ⁒ d x , ⁑ s > 2 ⁒ n , n = 1 , 2 , 3 , .
12: 1.10 Functions of a Complex Variable
β–Ί
Picard’s Theorem
β–Ί
§1.10(iv) Residue Theorem
β–Ί
Rouché’s Theorem
β–Ί
Lagrange Inversion Theorem
β–Ί
Extended Inversion Theorem
13: 25.6 Integer Arguments
β–Ί
25.6.8 ΢ ⁑ ( 2 ) = 3 ⁒ k = 1 1 k 2 ⁒ ( 2 ⁒ k k ) .
β–Ί
25.6.9 ΢ ⁑ ( 3 ) = 5 2 ⁒ k = 1 ( 1 ) k 1 k 3 ⁒ ( 2 ⁒ k k ) .
β–Ί
25.6.10 ΢ ⁑ ( 4 ) = 36 17 ⁒ k = 1 1 k 4 ⁒ ( 2 ⁒ k k ) .
β–Ί
25.6.13 ( 1 ) k ⁒ ΞΆ ( k ) ⁑ ( 2 ⁒ n ) = 2 ⁒ ( 1 ) n ( 2 ⁒ Ο€ ) 2 ⁒ n + 1 ⁒ m = 0 k r = 0 m ( k m ) ⁒ ( m r ) ⁒ ⁑ ( c k m ) ⁒ Ξ“ ( r ) ⁑ ( 2 ⁒ n + 1 ) ⁒ ΞΆ ( m r ) ⁑ ( 2 ⁒ n + 1 ) ,
β–Ί
25.6.14 ( 1 ) k ⁒ ΞΆ ( k ) ⁑ ( 1 2 ⁒ n ) = 2 ⁒ ( 1 ) n ( 2 ⁒ Ο€ ) 2 ⁒ n ⁒ m = 0 k r = 0 m ( k m ) ⁒ ( m r ) ⁒ ⁑ ( c k m ) ⁒ Ξ“ ( r ) ⁑ ( 2 ⁒ n ) ⁒ ΞΆ ( m r ) ⁑ ( 2 ⁒ n ) ,
14: Bibliography G
β–Ί
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • β–Ί
  • K. Goldberg, F. T. Leighton, M. Newman, and S. L. Zuckerman (1976) Tables of binomial coefficients and Stirling numbers. J. Res. Nat. Bur. Standards Sect. B 80B (1), pp. 99–171.
  • β–Ί
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ⁒ ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 15: 25.11 Hurwitz Zeta Function
    β–Ί
    25.11.7 ΢ ⁑ ( s , a ) = 1 a s + 1 ( 1 + a ) s ⁒ ( 1 2 + 1 + a s 1 ) + k = 1 n ( s + 2 ⁒ k 2 2 ⁒ k 1 ) ⁒ B 2 ⁒ k 2 ⁒ k ⁒ 1 ( 1 + a ) s + 2 ⁒ k 1 ( s + 2 ⁒ n 2 ⁒ n + 1 ) ⁒ 1 B ~ 2 ⁒ n + 1 ⁑ ( x ) ( x + a ) s + 2 ⁒ n + 1 ⁒ d x , s 1 , a > 0 , n = 1 , 2 , 3 , , ⁑ s > 2 ⁒ n .
    β–Ί
    25.11.10 ΢ ⁑ ( s , a ) = n = 0 ( s ) n n ! ⁒ ΢ ⁑ ( n + s ) ⁒ ( 1 a ) n , s 1 , | a 1 | < 1 .
    β–Ί
    25.11.32 0 a x n ⁒ ψ ⁑ ( x ) ⁒ d x = ( 1 ) n 1 ⁒ ΢ ⁑ ( n ) + ( 1 ) n ⁒ H n ⁒ B n + 1 n + 1 k = 0 n ( 1 ) k ⁒ ( n k ) ⁒ H k ⁒ B k + 1 ⁒ ( a ) k + 1 ⁒ a n k + k = 0 n ( 1 ) k ⁒ ( n k ) ⁒ ΢ ⁑ ( k , a ) ⁒ a n k , n = 1 , 2 , , ⁑ a > 0 ,
    β–Ί
    25.11.38 k = 1 ( n + k k ) ⁒ ΢ ⁑ ( n + k + 1 , a ) ⁒ z k = ( 1 ) n n ! ⁒ ( ψ ( n ) ⁑ ( a ) ψ ( n ) ⁑ ( a z ) ) , n = 1 , 2 , 3 , , ⁑ a > 0 , | z | < | a | .
    16: 25.16 Mathematical Applications
    β–ΊThe prime number theorem (27.2.3) is equivalent to the statement … β–Ί
    25.16.7 H ⁑ ( s ) = 1 2 ⁒ ΢ ⁑ ( s + 1 ) + ΢ ⁑ ( s ) s 1 r = 1 k ( s + 2 ⁒ r 2 2 ⁒ r 1 ) ⁒ ΢ ⁑ ( 1 2 ⁒ r ) ⁒ ΢ ⁑ ( s + 2 ⁒ r ) ( s + 2 ⁒ k 2 ⁒ k + 1 ) ⁒ n = 1 1 n ⁒ n B ~ 2 ⁒ k + 1 ⁑ ( x ) x s + 2 ⁒ k + 1 ⁒ d x .
    17: 15.2 Definitions and Analytical Properties
    β–Ί
    15.2.4 F ⁑ ( m , b ; c ; z ) = n = 0 m ( m ) n ⁒ ( b ) n ( c ) n ⁒ n ! ⁒ z n = n = 0 m ( 1 ) n ⁒ ( m n ) ⁒ ( b ) n ( c ) n ⁒ z n .