About the Project

best uniform polynomial approximation

AdvancedHelp

(0.001 seconds)

11—20 of 378 matching pages

11: Need Help?
We have also tried to use the best technologies available in order to make this information useful and accessible. …
12: 16.26 Approximations
§16.26 Approximations
For discussions of the approximation of generalized hypergeometric functions and the Meijer G -function in terms of polynomials, rational functions, and Chebyshev polynomials see Luke (1975, §§5.12 - 5.13) and Luke (1977b, Chapters 1 and 9).
13: 18.16 Zeros
Asymptotic Behavior
§18.16(iii) Ultraspherical, Legendre and Chebyshev
The constant j α , m 2 in (18.16.10) is the best possible since the ratio of the two sides of this inequality tends to 1 as n . … For an error bound for the first approximation yielded by this expansion see Olver (1997b, p. 408). Lastly, in view of (18.7.19) and (18.7.20), results for the zeros of L n ( ± 1 2 ) ( x ) lead immediately to results for the zeros of H n ( x ) . …
14: 10.69 Uniform Asymptotic Expansions for Large Order
§10.69 Uniform Asymptotic Expansions for Large Order
Let U k ( p ) and V k ( p ) be the polynomials defined in §10.41(ii), and …All fractional powers take their principal values. …
15: Bibliography T
  • N. M. Temme and A. B. Olde Daalhuis (1990) Uniform asymptotic approximation of Fermi-Dirac integrals. J. Comput. Appl. Math. 31 (3), pp. 383–387.
  • N. M. Temme (1978) Uniform asymptotic expansions of confluent hypergeometric functions. J. Inst. Math. Appl. 22 (2), pp. 215–223.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (1995c) Uniform asymptotic expansions of integrals: A selection of problems. J. Comput. Appl. Math. 65 (1-3), pp. 395–417.
  • N. M. Temme (1996a) Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters. Methods Appl. Anal. 3 (3), pp. 335–344.
  • 16: 28.8 Asymptotic Expansions for Large q
    §28.8(iv) Uniform Approximations
    Barrett’s Expansions
    Dunster’s Approximations
    Dunster (1994a) supplies uniform asymptotic approximations for numerically satisfactory pairs of solutions of Mathieu’s equation (28.2.1). …
    17: Bibliography D
  • P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou (1999b) Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (11), pp. 1335–1425.
  • T. M. Dunster (1994a) Uniform asymptotic approximation of Mathieu functions. Methods Appl. Anal. 1 (2), pp. 143–168.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • T. M. Dunster (2001c) Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions. SIAM J. Math. Anal. 32 (5), pp. 987–1013.
  • T. M. Dunster (2006) Uniform asymptotic approximations for incomplete Riemann zeta functions. J. Comput. Appl. Math. 190 (1-2), pp. 339–353.
  • 18: Bibliography W
  • Z. Wang and R. Wong (2006) Uniform asymptotics of the Stieltjes-Wigert polynomials via the Riemann-Hilbert approach. J. Math. Pures Appl. (9) 85 (5), pp. 698–718.
  • R. Wong and Y.-Q. Zhao (2003) Estimates for the error term in a uniform asymptotic expansion of the Jacobi polynomials. Anal. Appl. (Singap.) 1 (2), pp. 213–241.
  • R. Wong and Y. Zhao (2004) Uniform asymptotic expansion of the Jacobi polynomials in a complex domain. Proc. Roy. Soc. London Ser. A 460, pp. 2569–2586.
  • R. Wong and Y. Zhao (2005) On a uniform treatment of Darboux’s method. Constr. Approx. 21 (2), pp. 225–255.
  • R. Wong (1973b) On uniform asymptotic expansion of definite integrals. J. Approximation Theory 7 (1), pp. 76–86.
  • 19: DLMF Project News
    error generating summary
    20: 10.57 Uniform Asymptotic Expansions for Large Order
    §10.57 Uniform Asymptotic Expansions for Large Order
    Asymptotic expansions for 𝗃 n ( ( n + 1 2 ) z ) , 𝗒 n ( ( n + 1 2 ) z ) , 𝗁 n ( 1 ) ( ( n + 1 2 ) z ) , 𝗁 n ( 2 ) ( ( n + 1 2 ) z ) , 𝗂 n ( 1 ) ( ( n + 1 2 ) z ) , and 𝗄 n ( ( n + 1 2 ) z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). …