About the Project

basic hypergeometric functions

AdvancedHelp

(0.006 seconds)

21—30 of 35 matching pages

21: Bibliography G
β–Ί
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • β–Ί
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • β–Ί
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • β–Ί
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • β–Ί
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ⁒ ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 22: Bibliography M
    β–Ί
  • I. G. Macdonald (1990) Hypergeometric Functions.
  • β–Ί
  • H. Majima, K. Matsumoto, and N. Takayama (2000) Quadratic relations for confluent hypergeometric functions. Tohoku Math. J. (2) 52 (4), pp. 489–513.
  • β–Ί
  • S. C. Milne (1985c) A new symmetry related to π‘†π‘ˆ ⁒ ( n ) for classical basic hypergeometric series. Adv. in Math. 57 (1), pp. 71–90.
  • β–Ί
  • S. C. Milne (1985d) A q -analog of hypergeometric series well-poised in π‘†π‘ˆ ⁒ ( n ) and invariant G -functions. Adv. in Math. 58 (1), pp. 1–60.
  • β–Ί
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ⁒ ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • 23: Bibliography F
    β–Ί
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • β–Ί
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • β–Ί
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • β–Ί
  • N. J. Fine (1988) Basic Hypergeometric Series and Applications. Mathematical Surveys and Monographs, Vol. 27, American Mathematical Society, Providence, RI.
  • β–Ί
  • R. C. Forrey (1997) Computing the hypergeometric function. J. Comput. Phys. 137 (1), pp. 79–100.
  • 24: Bibliography K
    β–Ί
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • β–Ί
  • H. Ki and Y. Kim (2000) On the zeros of some generalized hypergeometric functions. J. Math. Anal. Appl. 243 (2), pp. 249–260.
  • β–Ί
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • β–Ί
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • β–Ί
  • C. Krattenthaler (1993) HYP and HYPQ. Mathematica packages for the manipulation of binomial sums and hypergeometric series respectively q -binomial sums and basic hypergeometric series. Séminaire Lotharingien de Combinatoire 30, pp. 61–76.
  • 25: 13.2 Definitions and Basic Properties
    §13.2 Definitions and Basic Properties
    β–ΊIn effect, the regular singularities of the hypergeometric differential equation at b and coalesce into an irregular singularity at . … β–Ί M ⁑ ( a , b , z ) is entire in z and a , and is a meromorphic function of b . … β–ΊFor U ⁑ ( a , b , z ) see (13.2.6). … β–Ί
    Kummer’s Transformations
    26: 18.38 Mathematical Applications
    β–ΊThe basic ideas of Gaussian quadrature, and their extensions to non-classical weight functions, and the computation of the corresponding quadrature abscissas and weights, have led to discrete variable representations, or DVRs, of Sturm–Liouville and other differential operators. … β–Ί
    Complex Function Theory
    β–ΊThe Askey–Gasper inequality …For the generalized hypergeometric function F 2 3 see (16.2.1). … β–Ί
    Non-Classical Weight Functions
    27: Bibliography P
    β–Ί
  • E. Pairman (1919) Tables of Digamma and Trigamma Functions. In Tracts for Computers, No. 1, K. Pearson (Ed.),
  • β–Ί
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • β–Ί
  • R. B. Paris (2013) Exponentially small expansions of the confluent hypergeometric functions. Appl. Math. Sci. (Ruse) 7 (133-136), pp. 6601–6609.
  • β–Ί
  • W. F. Perger, A. Bhalla, and M. Nardin (1993) A numerical evaluator for the generalized hypergeometric series. Comput. Phys. Comm. 77 (2), pp. 249–254.
  • β–Ί
  • H. N. Phien (1990) A note on the computation of the incomplete beta function. Adv. Eng. Software 12 (1), pp. 39–44.
  • 28: 31.3 Basic Solutions
    §31.3 Basic Solutions
    β–Ί
    §31.3(i) Fuchs–Frobenius Solutions at z = 0
    β–Ί
    §31.3(ii) Fuchs–Frobenius Solutions at Other Singularities
    β–Ί
    §31.3(iii) Equivalent Expressions
    β–ΊThe full set of 192 local solutions of (31.2.1), equivalent in 8 sets of 24, resembles Kummer’s set of 24 local solutions of the hypergeometric equation, which are equivalent in 4 sets of 6 solutions (§15.10(ii)); see Maier (2007).
    29: 8.17 Incomplete Beta Functions
    §8.17 Incomplete Beta Functions
    β–Ί
    §8.17(i) Definitions and Basic Properties
    β–Ί
    §8.17(ii) Hypergeometric Representations
    β–ΊFor the hypergeometric function F ⁑ ( a , b ; c ; z ) see §15.2(i). … β–Ί
    §8.17(vii) Addendum to 8.17(i) Definitions and Basic Properties
    30: 33.2 Definitions and Basic Properties
    §33.2 Definitions and Basic Properties
    β–ΊThe function F β„“ ⁑ ( Ξ· , ρ ) is recessive (§2.7(iii)) at ρ = 0 , and is defined by …where M ΞΊ , ΞΌ ⁑ ( z ) and M ⁑ ( a , b , z ) are defined in §§13.14(i) and 13.2(i), and … β–ΊThe functions H β„“ ± ⁑ ( Ξ· , ρ ) are defined by …where W ΞΊ , ΞΌ ⁑ ( z ) , U ⁑ ( a , b , z ) are defined in §§13.14(i) and 13.2(i), …