About the Project

asymptotic expansions as ϵ→0

AdvancedHelp

(0.015 seconds)

11—20 of 140 matching pages

11: 2.9 Difference Equations
f ( n ) s = 0 f s n s ,
g ( n ) s = 0 g s n s , n ,
2.9.8 w j ( n ) ρ j n n α j s = 0 a s , j n s , n .
2.9.12 w j ( n ) ρ n n α j s = 0 a s , j n s , n ,
2.9.13 w 2 ( n ) ρ n n α 2 s = 0 s α 2 α 1 b s n s + c w 1 ( n ) ln n , n .
12: 29.7 Asymptotic Expansions
29.7.1 a ν m ( k 2 ) p κ τ 0 τ 1 κ 1 τ 2 κ 2 ,
13: 14.15 Uniform Asymptotic Approximations
In other words, the convergent hypergeometric series expansions of 𝖯 ν μ ( ± x ) are also generalized (and uniform) asymptotic expansions as μ , with scale 1 / Γ ( j + 1 + μ ) , j = 0 , 1 , 2 , ; compare §2.1(v). …
14: 2.4 Contour Integrals
2.4.1 0 e z t q ( t ) d t s = 0 Γ ( s + λ μ ) a s z ( s + λ ) / μ
2.4.4 Q ( z ) s = 0 Γ ( s + λ μ ) a s z ( s + λ ) / μ , z ,
Furthermore, as t 0 + , q ( t ) has the expansion (2.3.7). … If p ( t 0 ) 0 , then μ = 1 , λ is a positive integer, and the two resulting asymptotic expansions are identical. …
2.4.15 a b e z p ( t ) q ( t ) d t 2 e z p ( t 0 ) s = 0 Γ ( s + 1 2 ) b 2 s z s + ( 1 / 2 ) ,
15: 10.67 Asymptotic Expansions for Large Argument
10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
10.67.2 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) .
10.67.5 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 1 8 ) π ) ,
10.67.6 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 1 8 ) π ) .
§10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0
16: 33.12 Asymptotic Expansions for Large η
33.12.2 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( 1 + B 1 μ + B 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( A 1 μ + A 2 μ 2 + ) } ,
33.12.3 F 0 ( η , ρ ) G 0 ( η , ρ ) π 1 / 2 ( 2 η ) 1 / 6 { Ai ( x ) Bi ( x ) ( B 1 + x A 1 μ + B 2 + x A 2 μ 2 + ) + Ai ( x ) Bi ( x ) ( B 1 + A 1 μ + B 2 + A 2 μ 2 + ) } ,
33.12.6 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 1 3 ) ω 1 / 2 2 π ( 1 2 35 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 4 8 2025 1 ω 6 5792 46 06875 Γ ( 2 3 ) Γ ( 1 3 ) 1 ω 10 ) ,
33.12.7 F 0 ( η , 2 η ) 3 1 / 2 G 0 ( η , 2 η ) Γ ( 2 3 ) 2 π ω 1 / 2 ( ± 1 + 1 15 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 2 ± 2 14175 1 ω 6 + 1436 23 38875 Γ ( 1 3 ) Γ ( 2 3 ) 1 ω 8 ± ) ,
17: 5.11 Asymptotic Expansions
5.11.3 Γ ( z ) = e z z z ( 2 π z ) 1 / 2 Γ ( z ) e z z z ( 2 π z ) 1 / 2 k = 0 g k z k ,
5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,
5.11.13 Γ ( z + a ) Γ ( z + b ) z a b k = 0 G k ( a , b ) z k ,
5.11.14 Γ ( z + a ) Γ ( z + b ) ( z + a + b 1 2 ) a b k = 0 H k ( a , b ) ( z + 1 2 ( a + b 1 ) ) 2 k .
5.11.19 Γ ( z + a ) Γ ( z + b ) Γ ( z + c ) k = 0 ( 1 ) k ( c a ) k ( c b ) k k ! Γ ( a + b c + z k ) .
18: 8.20 Asymptotic Expansions of E p ( z )
8.20.3 E p ( z ) ± 2 π i Γ ( p ) e p π i z p 1 + e z z k = 0 ( 1 ) k ( p ) k z k , 1 2 π + δ ± ph z 7 2 π δ ,
8.20.6 E p ( λ p ) e λ p ( λ + 1 ) p k = 0 A k ( λ ) ( λ + 1 ) 2 k 1 p k ,
19: 8.11 Asymptotic Approximations and Expansions
8.11.6 γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 δ .
8.11.7 Γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 δ .
8.11.18 S n ( x ) k = 0 d k ( x ) n k , n ,
20: 2.11 Remainder Terms; Stokes Phenomenon
2.11.7 E p ( z ) 2 π i e p π i Γ ( p ) z p 1 + e z z s = 0 ( 1 ) s ( p ) s z s ,
2.11.13 F n + p ( z ) e i ( ρ + α ) θ 1 + e i θ e ρ z ( 2 π ρ ) 1 / 2 s = 0 a 2 s ( θ , α ) ρ s , ρ ,
2.11.24 e x E 1 ( x ) s = 0 ( 1 ) s s ! x s + 1 , x + .
2.11.29 W κ , μ ( z ) n = 0 a n ,