About the Project

asymptotic expansion for large argument

AdvancedHelp

(0.006 seconds)

21—30 of 38 matching pages

21: Bibliography L
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.
  • D. Ludwig (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, pp. 215–250.
  • 22: 11.13 Methods of Computation
    §11.13(ii) Series Expansions
    Although the power-series expansions (11.2.1) and (11.2.2), and the Bessel-function expansions of §11.4(iv) converge for all finite values of z , they are cumbersome to use when | z | is large owing to slowness of convergence and cancellation. For large | z | and/or | ν | the asymptotic expansions given in §11.6 should be used instead. … Then from the limiting forms for small argument (§§11.2(i), 10.7(i), 10.30(i)), limiting forms for large argument (§§11.6(i), 10.7(ii), 10.30(ii)), and the connection formulas (11.2.5) and (11.2.6), it is seen that 𝐇 ν ( x ) and 𝐋 ν ( x ) can be computed in a stable manner by integrating forwards, that is, from the origin toward infinity. The solution 𝐊 ν ( x ) needs to be integrated backwards for small x , and either forwards or backwards for large x depending whether or not ν exceeds 1 2 . …
    23: Bibliography D
  • D. Dai, M. E. H. Ismail, and X. Wang (2014) Plancherel-Rotach asymptotic expansion for some polynomials from indeterminate moment problems. Constr. Approx. 40 (1), pp. 61–104.
  • R. B. Dingle (1973) Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, London-New York.
  • T. M. Dunster (1986) Uniform asymptotic expansions for prolate spheroidal functions with large parameters. SIAM J. Math. Anal. 17 (6), pp. 1495–1524.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • T. M. Dunster (2003b) Uniform asymptotic expansions for associated Legendre functions of large order. Proc. Roy. Soc. Edinburgh Sect. A 133 (4), pp. 807–827.
  • 24: Bibliography W
  • G. Wei and B. E. Eichinger (1993) Asymptotic expansions of some matrix argument hypergeometric functions, with applications to macromolecules. Ann. Inst. Statist. Math. 45 (3), pp. 467–475.
  • J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 1123–1127.
  • R. Wong (1973a) An asymptotic expansion of W k , m ( z ) with large variable and parameters. Math. Comp. 27 (122), pp. 429–436.
  • R. Wong (1973b) On uniform asymptotic expansion of definite integrals. J. Approximation Theory 7 (1), pp. 76–86.
  • R. Wong (1981) Asymptotic expansions of the Kontorovich-Lebedev transform. Appl. Anal. 12 (3), pp. 161–172.
  • 25: Bibliography O
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1951) A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, pp. 699–712.
  • F. W. J. Olver (1952) Some new asymptotic expansions for Bessel functions of large orders. Proc. Cambridge Philos. Soc. 48 (3), pp. 414–427.
  • 26: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • J. L. Fields (1973) Uniform asymptotic expansions of certain classes of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 4 (3), pp. 482–507.
  • J. L. Fields (1983) Uniform asymptotic expansions of a class of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 14 (6), pp. 1204–1253.
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • 27: 9.7 Asymptotic Expansions
    §9.7 Asymptotic Expansions
    §9.7(iii) Error Bounds for Real Variables
    §9.7(iv) Error Bounds for Complex Variables
    §9.7(v) Exponentially-Improved Expansions
    28: Bibliography T
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N.M. Temme and E.J.M. Veling (2022) Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z. Indagationes Mathematicae.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • J. Todd (1954) Evaluation of the exponential integral for large complex arguments. J. Research Nat. Bur. Standards 52, pp. 313–317.
  • 29: 15.19 Methods of Computation
    §15.19(i) Maclaurin Expansions
    For z it is always possible to apply one of the linear transformations in §15.8(i) in such a way that the hypergeometric function is expressed in terms of hypergeometric functions with an argument in the interval [ 0 , 1 2 ] . For z it is possible to use the linear transformations in such a way that the new arguments lie within the unit circle, except when z = e ± π i / 3 . … Large values of | a | or | b | , for example, delay convergence of the Gauss series, and may also lead to severe cancellation. … Initial values for moderate values of | a | and | b | can be obtained by the methods of §15.19(i), and for large values of | a | , | b | , or | c | via the asymptotic expansions of §§15.12(ii) and 15.12(iii). …
    30: 10.75 Tables
    Also, for additional listings of tables pertaining to complex arguments see Babushkina et al. (1997). …
  • Olver (1962) provides tables for the uniform asymptotic expansions given in §10.20(i), including ζ and ( 4 ζ / ( 1 x 2 ) ) 1 4 as functions of x ( = z ) and the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , D k ( ζ ) as functions of ζ . These enable J ν ( ν x ) , Y ν ( ν x ) , J ν ( ν x ) , Y ν ( ν x ) to be computed to 10S when ν 15 , except in the neighborhoods of zeros.

  • Olver (1960) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 2 ) 20 1 2 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n ; see §10.21(viii), and more fully Olver (1954).

  • Olver (1962) provides tables for the uniform asymptotic expansions given in §10.41(ii), including η and the coefficients U k ( p ) , V k ( p ) as functions of p = ( 1 + x 2 ) 1 2 . These enable I ν ( ν x ) , K ν ( ν x ) , I ν ( ν x ) , K ν ( ν x ) to be computed to 10S when ν 16 .

  • Olver (1960) tabulates a n , m , 𝗃 n ( a n , m ) , b n , m , 𝗒 n ( b n , m ) , n = 1 ( 1 ) 20 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n .