asymptotic expansions of integrals
(0.005 seconds)
1—10 of 93 matching pages
1: 6.12 Asymptotic Expansions
…
►
§6.12(i) Exponential and Logarithmic Integrals
… ►For the function see §9.7(i). … ►§6.12(ii) Sine and Cosine Integrals
… ► … ►2: 16.25 Methods of Computation
…
►Methods for computing the functions of the present chapter include power series, asymptotic expansions, integral representations, differential equations, and recurrence relations.
…
3: 6.13 Zeros
4: 8.20 Asymptotic Expansions of
§8.20 Asymptotic Expansions of
►§8.20(i) Large
… ►Where the sectors of validity of (8.20.2) and (8.20.3) overlap the contribution of the first term on the right-hand side of (8.20.3) is exponentially small compared to the other contribution; compare §2.11(ii). ►For an exponentially-improved asymptotic expansion of see §2.11(iii). ►§8.20(ii) Large
…5: 7.12 Asymptotic Expansions
…
►
§7.12(ii) Fresnel Integrals
►The asymptotic expansions of and are given by (7.5.3), (7.5.4), and ►
7.12.2
…
►They are bounded by times the first neglected terms when .
…
►
§7.12(iii) Goodwin–Staton Integral
…6: 9.15 Mathematical Applications
…
►Airy functions play an indispensable role in the construction of uniform asymptotic expansions for contour integrals with coalescing saddle points, and for solutions of linear second-order ordinary differential equations with a simple turning point.
…
7: 12.18 Methods of Computation
…
►These include the use of power-series expansions, recursion, integral representations, differential equations, asymptotic expansions, and expansions in series of Bessel functions.
…
8: 2.3 Integrals of a Real Variable
…
►For the Fourier integral
…
►
§2.3(ii) Watson’s Lemma
… ►
2.3.12
,
…
►
§2.3(iii) Laplace’s Method
… ►Then …9: 2.6 Distributional Methods
…
►
2.6.3
.
…
►