About the Project

arguments%20e%C2%B1i%CF%80%2F3

AdvancedHelp

(0.008 seconds)

11—20 of 865 matching pages

11: 35.2 Laplace Transform
§35.2 Laplace Transform
β–Ί
Definition
β–Ίwhere the integration variable 𝐗 ranges over the space 𝛀 . … β–Ί
Inversion Formula
β–Ί
Convolution Theorem
12: Bibliography N
β–Ί
  • M. Nardin, W. F. Perger, and A. Bhalla (1992b) Numerical evaluation of the confluent hypergeometric function for complex arguments of large magnitudes. J. Comput. Appl. Math. 39 (2), pp. 193–200.
  • β–Ί
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • β–Ί
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • β–Ί
  • G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.
  • β–Ί
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 13: Software Index
    14: 10.75 Tables
    β–ΊAlso, for additional listings of tables pertaining to complex arguments see Babushkina et al. (1997). … β–Ί
  • Bickley et al. (1952) tabulates x n ⁒ I n ⁑ ( x ) or e x ⁒ I n ⁑ ( x ) , x n ⁒ K n ⁑ ( x ) or e x ⁒ K n ⁑ ( x ) , n = 2 ⁒ ( 1 ) ⁒ 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ⁑ ( x ) , K n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 or 0.1 ⁒ ( .1 ) ⁒ 20 , 10S.

  • β–Ί
  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give e x ⁒ I n ⁑ ( x ) , e x ⁒ K n ⁑ ( x ) , n = 0 , 1 , 2 , x = 0 ⁒ ( .1 ) ⁒ 10 ⁒ ( .2 ) ⁒ 20 , 8D–10D or 10S; x ⁒ e x ⁒ I n ⁑ ( x ) , ( x / Ο€ ) e x ⁒ K n ⁑ ( x ) , n = 0 , 1 , 2 , 1 / x = 0 ⁒ ( .002 ) ⁒ 0.05 ; K 0 ⁑ ( x ) + I 0 ⁑ ( x ) ⁒ ln ⁑ x , x ⁒ ( K 1 ⁑ ( x ) I 1 ⁑ ( x ) ⁒ ln ⁑ x ) , x = 0 ⁒ ( .1 ) ⁒ 2 , 8D; e x ⁒ I n ⁑ ( x ) , e x ⁒ K n ⁑ ( x ) , n = 3 ⁒ ( 1 ) ⁒ 9 , x = 0 ⁒ ( .2 ) ⁒ 10 ⁒ ( .5 ) ⁒ 20 , 5S; I n ⁑ ( x ) , K n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 20 ⁒ ( 10 ) ⁒ 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 9–10S.

  • β–Ί
  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ⁑ ( z ) and K n ⁑ ( z ) , for n = 2 ⁒ ( 1 ) ⁒ 20 , 9S.

  • β–Ί
  • Kerimov and Skorokhodov (1984c) tabulates all zeros of I n 1 2 ⁑ ( z ) and I n 1 2 ⁑ ( z ) in the sector 0 ph ⁑ z 1 2 ⁒ Ο€ for n = 1 ⁒ ( 1 ) ⁒ 20 , 9S.

  • 15: 30.6 Functions of Complex Argument
    §30.6 Functions of Complex Argument
    β–ΊThe solutions …of (30.2.1) with ΞΌ = m and Ξ» = Ξ» n m ⁑ ( Ξ³ 2 ) are real when z ( 1 , ) , and their principal values (§4.2(i)) are obtained by analytic continuation to β„‚ βˆ– ( , 1 ] . … β–Ί
    30.6.3 𝒲 ⁑ { 𝑃𝑠 n m ⁑ ( z , Ξ³ 2 ) , 𝑄𝑠 n m ⁑ ( z , Ξ³ 2 ) } = ( 1 ) m ⁒ ( n + m ) ! ( 1 z 2 ) ⁒ ( n m ) ! ⁒ A n m ⁑ ( Ξ³ 2 ) ⁒ A n m ⁑ ( Ξ³ 2 ) ,
    β–Ίwith A n ± m ⁑ ( Ξ³ 2 ) as in (30.11.4). …
    16: Bibliography F
    β–Ί
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ⁒ ( z ) = e z 2 ⁒ ( 1 + 2 ⁒ i ⁒ Ο€ 1 / 2 ⁒ 0 z e t 2 ⁒ 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • β–Ί
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • β–Ί
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • β–Ί
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • β–Ί
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 17: 4.15 Graphics
    β–Ί
    §4.15(i) Real Arguments
    β–Ί
    §4.15(ii) Complex Arguments: Conformal Maps
    β–ΊFigure 4.15.7 illustrates the conformal mapping of the strip 1 2 ⁒ Ο€ < ⁑ z < 1 2 ⁒ Ο€ onto the whole w -plane cut along the real axis from to 1 and 1 to , where w = sin ⁑ z and z = arcsin ⁑ w (principal value). … β–Ί
    §4.15(iii) Complex Arguments: Surfaces
    β–ΊThe corresponding surfaces for arccos ⁑ ( x + i ⁒ y ) , arccot ⁑ ( x + i ⁒ y ) , arcsec ⁑ ( x + i ⁒ y ) can be visualized from Figures 4.15.9, 4.15.11, 4.15.13 with the aid of equations (4.23.16)–(4.23.18).
    18: 9.18 Tables
    β–Ί
  • Miller (1946) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) for x = 20 ⁒ ( .01 ) ⁒ 2 ; log 10 ⁑ Ai ⁑ ( x ) , Ai ⁑ ( x ) / Ai ⁑ ( x ) for x = 0 ⁒ ( .1 ) ⁒ 25 ⁒ ( 1 ) ⁒ 75 ; Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 10 ⁒ ( .1 ) ⁒ 2.5 ; log 10 ⁑ Bi ⁑ ( x ) , Bi ⁑ ( x ) / Bi ⁑ ( x ) for x = 0 ⁒ ( .1 ) ⁒ 10 ; M ⁑ ( x ) , N ⁑ ( x ) , ΞΈ ⁑ ( x ) , Ο• ⁑ ( x ) (respectively F ⁑ ( x ) , G ⁑ ( x ) , Ο‡ ⁑ ( x ) , ψ ⁑ ( x ) ) for x = 80 ⁒ ( 1 ) 30 ⁒ ( .1 ) ⁒ 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • β–Ί
  • Zhang and Jin (1996, p. 337) tabulates Ai ⁑ ( x ) , Ai ⁑ ( x ) , Bi ⁑ ( x ) , Bi ⁑ ( x ) for x = 0 ⁒ ( 1 ) ⁒ 20 to 8S and for x = 20 ⁒ ( 1 ) ⁒ 0 to 9D.

  • β–Ί
  • Miller (1946) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 . Precision is 8D. Entries for k = 1 ⁒ ( 1 ) ⁒ 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • β–Ί
  • Sherry (1959) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , k = 1 ⁒ ( 1 ) ⁒ 50 ; 20S.

  • β–Ί
  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ⁑ ( a k ) , a k , Ai ⁑ ( a k ) , b k , Bi ⁑ ( b k ) , b k , Bi ⁑ ( b k ) , k = 1 ⁒ ( 1 ) ⁒ 20 ; 8D.

  • 19: Bibliography
    β–Ί
  • A. Abramov (1960) Tables of ln ⁑ Ξ“ ⁒ ( z ) for Complex Argument. Pergamon Press, New York.
  • β–Ί
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • β–Ί
  • D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (3), pp. 265–273.
  • β–Ί
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • 20: Bibliography G
    β–Ί
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • β–Ί
  • E. S. Ginsberg and D. Zaborowski (1975) Algorithm 490: The Dilogarithm function of a real argument [S22]. Comm. ACM 18 (4), pp. 200–202.
  • β–Ί
  • K. I. Gross and D. St. P. Richards (1987) Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions. Trans. Amer. Math. Soc. 301 (2), pp. 781–811.