About the Project

alternative

AdvancedHelp

(0.001 seconds)

21—30 of 102 matching pages

21: 16.4 Argument Unity
β–Ί
16.4.2_5 F 2 3 ⁑ ( n , a , 1 n , c ; 1 ) = k = 0 n ( a ) k ( c ) k = c 1 c a 1 ⁒ ( 1 ( a ) n + 1 ( c 1 ) n + 1 ) ,
β–Ί β–Ί
16.4.5 F 2 3 ⁑ ( n , b , c 1 b n , 1 c n ; 1 ) = { 0 , n = 2 ⁒ k + 1 , ( 2 ⁒ k ) ! ⁒ Ξ“ ⁑ ( b + k ) ⁒ Ξ“ ⁑ ( c + k ) ⁒ Ξ“ ⁑ ( b + c + 2 ⁒ k ) k ! ⁒ Ξ“ ⁑ ( b + 2 ⁒ k ) ⁒ Ξ“ ⁑ ( c + 2 ⁒ k ) ⁒ Ξ“ ⁑ ( b + c + k ) , n = 2 ⁒ k ,
β–Ί
16.4.7 F 2 3 ⁑ ( a , 1 a , c d , 2 ⁒ c d + 1 ; 1 ) = Ο€ ⁒ Ξ“ ⁑ ( d ) ⁒ Ξ“ ⁑ ( 2 ⁒ c d + 1 ) ⁒ 2 1 2 ⁒ c Ξ“ ⁑ ( c + 1 2 ⁒ ( a d + 1 ) ) ⁒ Ξ“ ⁑ ( c + 1 1 2 ⁒ ( a + d ) ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ ( a + d ) ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ ( d a + 1 ) ) ,
β–Ί
16.4.8 F 2 3 ⁑ ( n , a , 1 a d , 1 d 2 ⁒ n ; 1 ) = ( 1 2 ⁒ ( a + d ) ) n ⁒ ( 1 2 ⁒ ( d a + 1 ) ) n ( 1 2 ⁒ d ) n ⁒ ( 1 2 ⁒ ( d + 1 ) ) n , n = 0 , 1 , .
22: 16.8 Differential Equations
β–Ί β–Ί
16.8.8 F q q + 1 ⁑ ( a 1 , , a q + 1 b 1 , , b q ; z ) = j = 1 q + 1 ( k = 1 k j q + 1 Ξ“ ⁑ ( a k a j ) Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k a j ) Ξ“ ⁑ ( b k ) ) ⁒ w ~ j ⁒ ( z ) , | ph ⁑ ( z ) | Ο€ .
β–Ί
16.8.9 ( k = 1 q + 1 Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k ) ) ⁒ F q q + 1 ⁑ ( a 1 , , a q + 1 b 1 , , b q ; z ) = j = 1 q + 1 ( z 0 z ) a j ⁒ n = 0 Ξ“ ⁑ ( a j + n ) n ! ⁒ ( k = 1 k j q + 1 Ξ“ ⁑ ( a k a j n ) / k = 1 q Ξ“ ⁑ ( b k a j n ) ) ⁒ F q q + 1 ⁑ ( a 1 a j n , , a q + 1 a j n b 1 a j n , , b q a j n ; z 0 ) ⁒ ( z z 0 ) n .
β–Ί β–Ί
23: 16.11 Asymptotic Expansions
β–Ί β–Ί β–Ί β–Ί β–Ί
24: 10.1 Special Notation
β–ΊA common alternative notation for Y Ξ½ ⁑ ( z ) is N Ξ½ ⁑ ( z ) . …
25: 8.1 Special Notation
β–ΊAlternative notations include: Prym’s functions P z ⁑ ( a ) = Ξ³ ⁑ ( a , z ) , Q z ⁑ ( a ) = Ξ“ ⁑ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = Ξ³ ⁑ ( a + 1 , z ) , [ a , z ] ! = Ξ“ ⁑ ( a + 1 , z ) , Dingle (1973); B ⁑ ( a , b , x ) = B x ⁑ ( a , b ) , I ⁑ ( a , b , x ) = I x ⁑ ( a , b ) , Magnus et al. (1966); Si ⁑ ( a , x ) Si ⁑ ( 1 a , x ) , Ci ⁑ ( a , x ) Ci ⁑ ( 1 a , x ) , Luke (1975).
26: 16.1 Special Notation
β–ΊAlternative notations are F q p ⁑ ( 𝐚 𝐛 ; z ) , F q p ⁑ ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ⁑ ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ⁑ ( Ξ± , Ξ² , Ξ² ; Ξ³ ; x , y ) , F 2 ⁑ ( Ξ± , Ξ² , Ξ² ; Ξ³ , Ξ³ ; x , y ) , F 3 ⁑ ( Ξ± , Ξ± , Ξ² , Ξ² ; Ξ³ ; x , y ) , F 4 ⁑ ( Ξ± , Ξ² ; Ξ³ , Ξ³ ; x , y ) , for the Appell functions, and G p , q m , n ⁑ ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
27: 16.5 Integral Representations and Integrals
β–Ί
16.5.1 ( k = 1 p Ξ“ ⁑ ( a k ) / k = 1 q Ξ“ ⁑ ( b k ) ) ⁒ F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ L ( k = 1 p Ξ“ ⁑ ( a k + s ) / k = 1 q Ξ“ ⁑ ( b k + s ) ) ⁒ Ξ“ ⁑ ( s ) ⁒ ( z ) s ⁒ d s ,
β–Ί
16.5.2 F q + 1 p + 1 ⁑ ( a 0 , , a p b 0 , , b q ; z ) = Ξ“ ⁑ ( b 0 ) Ξ“ ⁑ ( a 0 ) ⁒ Ξ“ ⁑ ( b 0 a 0 ) ⁒ 0 1 t a 0 1 ⁒ ( 1 t ) b 0 a 0 1 ⁒ F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ⁒ t ) ⁒ d t , ⁑ b 0 > ⁑ a 0 > 0 ,
β–Ί β–Ί
28: 16.18 Special Cases
β–Ί
16.18.1 F q p ⁑ ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q Ξ“ ⁑ ( b k ) / k = 1 p Ξ“ ⁑ ( a k ) ) ⁒ G p , q + 1 1 , p ⁑ ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q Ξ“ ⁑ ( b k ) / k = 1 p Ξ“ ⁑ ( a k ) ) ⁒ G q + 1 , p p , 1 ⁑ ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
29: 16.23 Mathematical Applications
30: 17.1 Special Notation
β–ΊFine (1988) uses F ⁑ ( a , b ; t : q ) for a particular specialization of a Ο• 1 2 function.