About the Project

Watson sum

AdvancedHelp

(0.001 seconds)

21—30 of 56 matching pages

21: 27.21 Tables
Glaisher (1940) contains four tables: Table I tabulates, for all n 10 4 : (a) the canonical factorization of n into powers of primes; (b) the Euler totient ϕ ( n ) ; (c) the divisor function d ( n ) ; (d) the sum σ ( n ) of these divisors. … The partition function p ( n ) is tabulated in Gupta (1935, 1937), Watson (1937), and Gupta et al. (1958). Tables of the Ramanujan function τ ( n ) are published in Lehmer (1943) and Watson (1949). …
22: 20.5 Infinite Products and Related Results
20.5.9 θ 3 ( π z | τ ) = n = p 2 n q n 2 = n = 1 ( 1 q 2 n ) ( 1 + q 2 n 1 p 2 ) ( 1 + q 2 n 1 p 2 ) ,
20.5.10 θ 1 ( z , q ) θ 1 ( z , q ) cot z = 4 sin ( 2 z ) n = 1 q 2 n 1 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 q 2 n 1 q 2 n sin ( 2 n z ) ,
20.5.11 θ 2 ( z , q ) θ 2 ( z , q ) + tan z = 4 sin ( 2 z ) n = 1 q 2 n 1 + 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 ( 1 ) n q 2 n 1 q 2 n sin ( 2 n z ) .
20.5.12 θ 3 ( z , q ) θ 3 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 ( 1 ) n q n 1 q 2 n sin ( 2 n z ) ,
20.5.13 θ 4 ( z , q ) θ 4 ( z , q ) = 4 sin ( 2 z ) n = 1 q 2 n 1 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 = 4 n = 1 q n 1 q 2 n sin ( 2 n z ) .
23: 10.21 Zeros
No two of the functions J 0 ( z ) , J 1 ( z ) , J 2 ( z ) , , have any common zeros other than z = 0 ; see Watson (1944, §15.28). …
10.21.22 ρ ν ( t ) ν k = 0 α k ν 2 k / 3 ,
10.21.27 σ ν ( t ) ν k = 0 α k ν 2 k / 3 ,
10.21.55 σ n ( ν ) = m = 1 ( j ν , m ) 2 n , n = 1 , 2 , 3 , .
See also Watson (1944, §§15.5, 15.51). …
24: 2.11 Remainder Terms; Stokes Phenomenon
Application of Watson’s lemma (§2.4(i)) yields … The transformations in §3.9 for summing slowly convergent series can also be very effective when applied to divergent asymptotic series. … Multiplying these differences by ( 1 ) j 2 j 1 and summing, we obtain …Subtraction of this result from the sum of the first 5 terms in (2.11.25) yields 0. … The next column lists the partial sums s n = a 0 + a 1 + + a n . …
25: 11.4 Basic Properties
11.4.1 𝐊 n + 1 2 ( z ) = ( 2 π z ) 1 2 m = 0 n ( 2 m ) !  2 2 m m ! ( n m ) ! ( 1 2 z ) n 2 m ,
11.4.2 𝐋 n + 1 2 ( z ) = I n 1 2 ( z ) ( 2 π z ) 1 2 m = 0 n ( 1 ) m ( 2 m ) !  2 2 m m ! ( n m ) ! ( 1 2 z ) n 2 m ,
11.4.19 𝐇 ν ( z ) = ( z 2 π ) 1 / 2 k = 0 ( 1 2 z ) k k ! ( k + 1 2 ) J k + ν + 1 2 ( z ) ,
11.4.21 𝐇 0 ( z ) = 4 π k = 0 J 2 k + 1 ( z ) 2 k + 1 = 2 k = 0 ( 1 ) k J k + 1 2 2 ( 1 2 z ) ,
11.4.22 𝐇 1 ( z ) = 2 π ( 1 J 0 ( z ) ) + 4 π k = 1 J 2 k ( z ) 4 k 2 1 = 4 k = 0 J 2 k + 1 2 ( 1 2 z ) J 2 k + 3 2 ( 1 2 z ) .
26: 10.31 Power Series
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
27: 20.4 Values at z = 0
20.4.8 θ 1 ′′′ ( 0 , q ) θ 1 ( 0 , q ) = 1 + 24 n = 1 q 2 n ( 1 q 2 n ) 2 .
20.4.9 θ 2 ′′ ( 0 , q ) θ 2 ( 0 , q ) = 1 8 n = 1 q 2 n ( 1 + q 2 n ) 2 ,
20.4.10 θ 3 ′′ ( 0 , q ) θ 3 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 + q 2 n 1 ) 2 ,
20.4.11 θ 4 ′′ ( 0 , q ) θ 4 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 q 2 n 1 ) 2 .
28: 2.4 Contour Integrals
§2.4(i) Watson’s Lemma
2.4.1 0 e z t q ( t ) d t s = 0 Γ ( s + λ μ ) a s z ( s + λ ) / μ
2.4.4 Q ( z ) s = 0 Γ ( s + λ μ ) a s z ( s + λ ) / μ , z ,
  • (a)

    In a neighborhood of a

    2.4.11
    p ( t ) = p ( a ) + s = 0 p s ( t a ) s + μ ,
    q ( t ) = s = 0 q s ( t a ) s + λ 1 ,

    with λ > 0 , μ > 0 , p 0 0 , and the branches of ( t a ) λ and ( t a ) μ continuous and constructed with ph ( t a ) ω as t a along 𝒫 .

  • 2.4.12 I ( z ) e z p ( a ) s = 0 Γ ( s + λ μ ) b s z ( s + λ ) / μ
    29: 11.11 Asymptotic Expansions of Anger–Weber Functions
    11.11.8 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ ,
    11.11.10 𝐀 ν ( λ ν ) 1 π k = 0 ( 2 k ) ! a k ( λ ) ν 2 k + 1 , ν , | ph ν | π δ .
    30: 12.9 Asymptotic Expansions for Large Variable
    12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
    12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
    12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
    12.9.4 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s ± i Γ ( 1 2 a ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 3 4 π δ .