About the Project

SL(2,Z) bilinear transformation

AdvancedHelp

(0.001 seconds)

41—50 of 814 matching pages

41: 13.23 Integrals
§13.23(i) Laplace and Mellin Transforms
§13.23(ii) Fourier Transforms
§13.23(iii) Hankel Transforms
§13.23(iv) Integral Transforms in terms of Whittaker Functions
42: 7.14 Integrals
Fourier Transform
Laplace Transforms
Laplace Transforms
7.14.7 0 e a t C ( 2 t π ) d t = ( a 2 + 1 + a ) 1 2 2 a a 2 + 1 , a > 0 ,
For collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). …
43: 6.14 Integrals
§6.14(i) Laplace Transforms
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
For collections of integrals, see Apelblat (1983, pp. 110–123), Bierens de Haan (1939, pp. 373–374, 409, 479, 571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al. (1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3 and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen (1906b), Oberhettinger (1974, pp. 139–141), Oberhettinger (1990, pp. 53–55 and 158–160), Oberhettinger and Badii (1973, pp. 172–179), Prudnikov et al. (1986b, vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a, §§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Watrasiewicz (1967).
44: 21.6 Products
Also, let 𝐙 be an arbitrary g × h matrix. …
21.6.3 j = 1 h θ ( k = 1 h T j k 𝐳 k | 𝛀 ) = 1 𝒟 g 𝐀 𝒦 𝐁 𝒦 e 2 π i tr [ 1 2 𝐀 T 𝛀 𝐀 + 𝐀 T [ 𝐙 + 𝐁 ] ] j = 1 h θ ( 𝐳 j + 𝛀 𝐚 j + 𝐛 j | 𝛀 ) ,
where 𝐳 j , 𝐚 j , 𝐛 j denote respectively the j th columns of 𝐙 , 𝐀 , 𝐁 . …
21.6.5 𝐓 = 1 2 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] .
21.6.7 θ [ 1 2 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 + 𝐝 3 + 𝐝 4 ] ] ( 𝐱 + 𝐲 + 𝐮 + 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 + 𝐜 2 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 + 𝐝 2 𝐝 3 𝐝 4 ] ] ( 𝐱 + 𝐲 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 + 𝐜 3 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 + 𝐝 3 𝐝 4 ] ] ( 𝐱 𝐲 + 𝐮 𝐯 2 | 𝛀 ) θ [ 1 2 [ 𝐜 1 𝐜 2 𝐜 3 + 𝐜 4 ] 1 2 [ 𝐝 1 𝐝 2 𝐝 3 + 𝐝 4 ] ] ( 𝐱 𝐲 𝐮 + 𝐯 2 | 𝛀 ) = 1 2 g 𝜶 1 2 g / g 𝜷 1 2 g / g e 2 π i 𝜷 [ 𝐜 1 + 𝐜 2 + 𝐜 3 + 𝐜 4 ] θ [ 𝐜 1 + 𝜶 𝐝 1 + 𝜷 ] ( 𝐱 | 𝛀 ) θ [ 𝐜 2 + 𝜶 𝐝 2 + 𝜷 ] ( 𝐲 | 𝛀 ) θ [ 𝐜 3 + 𝜶 𝐝 3 + 𝜷 ] ( 𝐮 | 𝛀 ) θ [ 𝐜 4 + 𝜶 𝐝 4 + 𝜷 ] ( 𝐯 | 𝛀 ) .
45: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
2 ( sin 1 2 x ) α + 1 2 ( cos 1 2 x ) β + 1 2 × P n ( α , β ) ( cos x ) 1 0 1 4 α 2 4 sin 2 1 2 x + 1 4 β 2 4 cos 2 1 2 x ( n + 1 2 ( α + β + 1 ) ) 2
9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
12 H n ( x ) 1 2 x 0 2 n
13 e 1 2 x 2 H n ( x ) 1 0 x 2 2 n + 1
Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
46: 29.21 Tables
  • Ince (1940a) tabulates the eigenvalues a ν m ( k 2 ) , b ν m + 1 ( k 2 ) (with a ν 2 m + 1 and b ν 2 m + 1 interchanged) for k 2 = 0.1 , 0.5 , 0.9 , ν = 1 2 , 0 ( 1 ) 25 , and m = 0 , 1 , 2 , 3 . Precision is 4D.

  • Arscott and Khabaza (1962) tabulates the coefficients of the polynomials P in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues h for k 2 = 0.1 ( .1 ) 0.9 , n = 1 ( 1 ) 30 . Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

  • 47: 1.16 Distributions
    §1.16(vii) Fourier Transforms of Tempered Distributions
    Then its Fourier transform is … The Fourier transform ( u ) of a tempered distribution is again a tempered distribution, and …
    §1.16(viii) Fourier Transforms of Special Distributions
    Since 2 π ( δ ) = 1 , we have …
    48: 13.10 Integrals
    §13.10(ii) Laplace Transforms
    §13.10(iii) Mellin Transforms
    §13.10(iv) Fourier Transforms
    §13.10(v) Hankel Transforms
    49: 2.6 Distributional Methods
    §2.6(ii) Stieltjes Transform
    The Stieltjes transform of f ( t ) is defined by … f ( z ) being the Mellin transform of f ( t ) or its analytic continuation (§2.5(ii)). … Corresponding results for the generalized Stieltjes transformwhere f ( z ) is the Mellin transform of f or its analytic continuation. …
    50: 19.22 Quadratic Transformations
    §19.22 Quadratic Transformations
    Bartky’s Transformation
    Descending Gauss transformations include, as special cases, transformations of complete integrals into complete integrals; ascending Landen transformations do not. …