About the Project

Riemann identity

AdvancedHelp

(0.001 seconds)

11—20 of 25 matching pages

11: 15.17 Mathematical Applications
§15.17(iv) Combinatorics
In combinatorics, hypergeometric identities classify single sums of products of binomial coefficients. … The three singular points in Riemann’s differential equation (15.11.1) lead to an interesting Riemann sheet structure. By considering, as a group, all analytic transformations of a basis of solutions under analytic continuation around all paths on the Riemann sheet, we obtain the monodromy group. These monodromy groups are finite iff the solutions of Riemann’s differential equation are all algebraic. …
12: 25.9 Asymptotic Approximations
§25.9 Asymptotic Approximations
25.9.1 ζ ( σ + i t ) = 1 n x 1 n s + χ ( s ) 1 n y 1 n 1 s + O ( x σ ) + O ( y σ 1 t 1 2 σ ) ,
25.9.2 χ ( s ) π s 1 2 Γ ( 1 2 1 2 s ) / Γ ( 1 2 s ) .
25.9.3 ζ ( 1 2 + i t ) = n = 1 m 1 n 1 2 + i t + χ ( 1 2 + i t ) n = 1 m 1 n 1 2 i t + O ( t 1 / 4 ) .
13: 25.11 Hurwitz Zeta Function
The Riemann zeta function is a special case:
25.11.2 ζ ( s , 1 ) = ζ ( s ) .
25.11.11 ζ ( s , 1 2 ) = ( 2 s 1 ) ζ ( s ) , s 1 .
25.11.40 G n = 0 ( 1 ) n ( 2 n + 1 ) 2 = 0.91596 55941 772 .
25.11.41 ζ ( s , a + 1 ) = ζ ( s ) s ζ ( s + 1 ) a + O ( a 2 ) .
14: 25.5 Integral Representations
25.5.6 ζ ( s ) = 1 2 + 1 s 1 + 1 Γ ( s ) 0 ( 1 e x 1 1 x + 1 2 ) x s 1 e x d x , s > 1 .
15: 21.1 Special Notation
g , h positive integers.
𝛀 g × g complex, symmetric matrix with 𝛀 strictly positive definite, i.e., a Riemann matrix.
𝐈 g g × g identity matrix.
Uppercase boldface letters are g × g real or complex matrices. The main functions treated in this chapter are the Riemann theta functions θ ( 𝐳 | 𝛀 ) , and the Riemann theta functions with characteristics θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 ) . The function Θ ( ϕ | 𝐁 ) = θ ( ϕ / ( 2 π i ) | 𝐁 / ( 2 π i ) ) is also commonly used; see, for example, Belokolos et al. (1994, §2.5), Dubrovin (1981), and Fay (1973, Chapter 1).
16: Bibliography R
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • B. Riemann (1899) Elliptische Functionen. Teubner, Leipzig.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • J. Riordan (1979) Combinatorial Identities. Robert E. Krieger Publishing Co., Huntington, NY.
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 17: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    In this section we will only consider the special case w ( x ) = 1 , so d α ( x ) = d x ; in which case L 2 ( X ) L 2 ( X , d x ) . … Other choices of boundary conditions, identical for f ( x ) and g ( x ) , and which also lead to the vanishing of the boundary terms in (1.18.26), each lead to a distinct self adjoint extension of T . … It is to be noted that if any of the λ 𝝈 have degenerate sub-spaces, that is subspaces of orthogonal eigenfunctions with identical eigenvalues, that in the expansions below all such distinct eigenfunctions are to be included. … What then is the condition on q ( x ) to insure the existence of at least a single eigenvalue in the point spectrum? The discussions of §1.18(vi) imply that if q ( x ) 0 then there is only a continuous spectrum. …
    18: Bibliography B
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • M. V. Berry and F. J. Wright (1980) Phase-space projection identities for diffraction catastrophes. J. Phys. A 13 (1), pp. 149–160.
  • J. M. Borwein and P. B. Borwein (1991) A cubic counterpart of Jacobi’s identity and the AGM. Trans. Amer. Math. Soc. 323 (2), pp. 691–701.
  • J. L. Burchnall and T. W. Chaundy (1948) The hypergeometric identities of Cayley, Orr, and Bailey. Proc. London Math. Soc. (2) 50, pp. 56–74.
  • 19: 27.12 Asymptotic Formulas: Primes
    π ( x ) li ( x ) changes sign infinitely often as x ; see Littlewood (1914), Bays and Hudson (2000). The Riemann hypothesis25.10(i)) is equivalent to the statement that for every x 2657 , … For example, if 2 n 2 ( mod n ) , then n is composite. … A Carmichael number is a composite number n for which b n b ( mod n ) for all b . …
    20: 27.11 Asymptotic Formulas: Partial Sums
    27.11.5 n x σ α ( n ) = ζ ( α + 1 ) α + 1 x α + 1 + O ( x β ) , α > 0 , α 1 , β = max ( 1 , α ) .
    27.11.9 p x p h ( mod k ) 1 p = 1 ϕ ( k ) ln ln x + B + O ( 1 ln x ) ,
    27.11.11 p x p h ( mod k ) ln p p = 1 ϕ ( k ) ln x + O ( 1 ) ,
    Letting x in (27.11.9) or in (27.11.11) we see that there are infinitely many primes p h ( mod k ) if h , k are coprime; this is Dirichlet’s theorem on primes in arithmetic progressions. … The prime number theorem for arithmetic progressions—an extension of (27.2.3) and first proved in de la Vallée Poussin (1896a, b)—states that if ( h , k ) = 1 , then the number of primes p x with p h ( mod k ) is asymptotic to x / ( ϕ ( k ) ln x ) as x .